
Self-Indexing RDF Archives∗

Ana Cerdeira-Pena§, Antonio Fariña§, Javier D. Fernández†, and
Miguel A. Mart́ınez-Prieto‡

§ Database Lab. † Institute for Information Business ‡DataWeb Research
Facultade de Informática Vienna University of Economics and Dept. of Computer Science
Univ. of A Coruña, Spain Business (WU), Austria Univ. of Valladolid, Spain

acerdeira@udc.es, fari@udc.es, jfernand@wu.ac.at, migumar2@infor.uva.es

Abstract

Although Big RDF management is an emerging topic in the so-called Web of Data, existing
techniques disregard the dynamic nature of RDF data. These RDF archives evolve over
time and need to be preserved and queried across it. This paper presents v-RDFCSA, an
RDF archiving solution that extends RDFCSA (an RDF self-index) to provide version-
based queries on top of compressed RDF archives. Our experiments show that v-RDFCSA
reduces space requirements up to 35 − 60 times over a state-of-the-art baseline, and gets
more than one order of magnitude ahead over it for query resolution.

1 Introduction

The last decade has seen an impressive growth of the use of RDF (Resource Descrip-
tion Framework) [13] in the Web. Projects such as Linked Open Data or schema.org
have promoted RDF as de facto standard to describe facts about any field of knowl-
edge in the Web. This knowledge is continuously evolving in this emerging Web of
Data [11], and these changes bring new dataset versions which should be archived
to cover needs such as studying the data evolution across time or reverting changes.
However, previous experiences in Web archiving highlight scalability problems when
managing evolving information at Web-scale [8]. The Semantic Web is starting to face
similar challenges when archiving historical RDF data (referred to as RDF archives),
making the task of longitudinal querying across time a challenge [5].

Although different strategies have been proposed to manage RDF archives their
storage requirements are far from being considered effective. For instance, these
strategies need up to 15 times the space used by gzip for storing a state-of-the-art
RDF archive [7]. In this scenario, RDF compression arise as a natural choice as many
techniques provide efficient query resolution [1, 2, 6]. However, they consider a static
RDF datasets and, to the best of our knowledge, they have not been tailored to be
used in RDF archives.

This paper describes v-RDFCSA, the first approach that natively provides efficient
query resolution on top of compressed RDF archives. It represents all different RDF
triples in the archive using RDFCSA [2], a self-index that ensures SPARQL reso-
lution on the compressed data. In turn, information about versions is succinctly

∗ Funded by MINECO (PGE and FEDER) grants TIN2013-46238-C4-3-R, TIN2013-47090-C3-
3-P, and TIN2015-69951-R; CDTI, MINECO grant ITC-20151247; ICT COST Action IC1302;
Xunta de Galicia (co-founded with FEDER) grant GRC2013/053; and Austrian Science Fund
(FWF): M1720-G11.

ex:Simeone ex:playsFor ex:Atletico .

ex:Torres ex:playsFor ex:Atletico .

ex:Atletico ex:hasCoach ex:Manzano .

ex:Simeone

ex:has Coach

ex:Torres

ex:Atletico

ex:Manzano

ex:Simeone ex:playsFor ex:Atletico .

ex:Torres ex:playsFor ex:Atletico .

ex:Atletico ex:hasCoach ex:Manzano .

ex:Falcao ex:playsFor ex:Atletico .

ex:playsFor
ex:Simeone

ex:has Coach ex:Torres

ex:Atletico

ex:Manzano ex:Falcao

[DEL]

[DEL]

[ADD]

ex:Atletico ex:hasCoach ex:Manzano .

ex:Falcao ex:playsFor ex:Atletico .

ex:Atletico ex:hasCoach ex:Simeone .

ex:Torres ex:playsFor ex:Atletico .

ex:Simeone

ex:has Coach ex:Torres

ex:Atletico

ex:Manzano ex:Falcao

[DEL]

[DEL]

[ADD]

[ADD]

RDF Graph V1 RDF Graph V2 RDF Graph V3

Figure 1: Example of RDF graph versions.

encoded using bitsequences that allow version-based queries to be efficiently resolved.
Experiments on BEAR [7], the state-of-the-art benchmark for RDF archives, show
that v-RDFCSA encodes an archive of 325GB in just 5.7 − 7.3GB, and provide query
resolution one order of magnitude faster than a reference baseline.

The rest of the paper is organized as follows. Section 2 provides the necessary
background to understand our approach, which is explained in Section 3. Section 4
compares v-RDFCSA performance with other reference strategies used for RDF archiv-
ing. Finally, Section 5 includes conclusions and devises future lines of research.

2 Background

RDF and SPARQL are the main technologies for archiving applications. RDF [13]
states facts in the form of ternary structures (triples). Each triple relates a subject
data entity and an object value using a predicate property. In practice, each triple is
a simple graph in which the predicate labels the edge from the subject to the object
node. Thus, a set of RDF triples is a labelled directed graph which connects multiple
descriptive facts about subject entities. SPARQL [10] is a graph-pattern matching
language designed for querying RDF datasets. It combines triple patterns (RDF
triples in which each component may be variable) using joins, unions, etc.

RDF archive. An RDF archive organizes versions of an RDF dataset by annotat-
ing triples with version labels. Following [7], a version-annotated triple is an RDF
triple (s, p, o) with a label i ∈ [1,N] representing the version in which this triple
holds. Thus, an RDF archive A, is a set of version-annotated triples.

Figure 1 illustrates a 3-version RDF archive that describes facts about players
and coaches of the “Atlético de Madrid” soccer team. First version, V1, models two
players: ex:Torres and ex:Simeone, and the coach ex:Manzano. Both players leave
the team in V2, but ex:Falcao is hired as a new player. Finally, the former player
ex:Simeone replaces ex:Manzano as the coach in V3, whereas ex:Falcao leaves the
team in favour of ex:Torres, who rejoins ex:Atletico.

Retrieval Functionality. RDF archives provide SPARQL queries focused on par-
ticular versions or on differences (deltas) between two or more given versions in the
archive. All these possible operations can be built using three primitive queries [5]:

• Version materialisation queries: Mat(Q, Vi), returns bindings for the SPARQL
query Q in version Vi. For instance, Mat((ex:Atletico,ex:hasCoach,?x), V2)
obtains ex:Manzano as Atlético’s coach in V2.

• Delta materialisation queries: Diff(Q, Vi, Vj), retrieves bindings that match
Q in Vi but not in Vj (deleted bindings), and vice versa (added bindings); e.g.
Diff((?x,playsFor,ex:Atletico), V1, V2) returns ex:Simeone and ex:Torres as
deleted bindings in V2, and ex:Falcao as an added binding.

• Version queries: V er(Q), resolves Q and annotates bindings with versions in
which each of them holds; e.g. V er((ex:Atletico,hasCoach,?x)) returns that
ex:Manzano is present in V1 and V2, and ex:Simeone is the coach in V3.

More complex queries can be built on top of these primitives. For instance,
which players have been also coaching the team? This query can be resolved as i)
Mat((?x,ex:playsFor,ex:Atletico , Vi) ⊲⊳ Mat((ex:Atletico,ex:hasCoach,?x),Vj),
∀i, j ∈ N ; or ii) by joining two version operations: V er((?x, ex:playsFor,ex:Atle-

tico)) ⊲⊳ V er((ex:Atletico,ex:hasCoach,?x)).

State of the Art of RDF Archiving

RDF archiving has been approached from three different strategies [5]. Techniques
keeping independent copies (Ic) manage versions as different datasets [12]. This
organization enables version materialisation queries to be efficiently resolved, but
penalizes the other ones, and brings an obvious space overhead because of duplicated
triples among the versions. Change-based (Cb) approaches perform a differential
encoding between consecutive versions. That is, Vi is stored as the differences (added
and deleted triples) with respect to the previous version. This reorganization reduces
space requirements and speeds up delta queries, but heavily penalizes version queries
because of the need for delta propagation. Practical Cb approaches [4] store fresh,
fully materialized versions every k deltas. Finally, timestamp-based (Tb) approaches
[17] regard the archive as a single dataset comprising all different triples, which are
annotated with version information (when they are added or deleted). Version queries
exploit this triple arrangement, but practical Tb deployments demand to index this
additional version-based dimension, which leads to significant space overheads.

A recent archiving benchmark, BEAR [7], shows that each strategy excels for their
expected query, at the price of huge space requirements (they needed ≈ 200−350GB
for encoding an archive whose gzipped size is only 23GB). This scenario clearly claims
for a more compact and effective representation.

State of the Art of RDF Compression

HDT [6] was the precursor of RDF compressors based on succinct data structures.
It transforms the RDF graph into a forest of subject-rooted trees, which are encoded
using rank/select bitsequences [9]. It reports good compression ratios and is able
to efficiently resolve SPARQL triple patterns. K2-triples [1] exploits structural re-
dundancy from the graph topology to outperform HDT effectiveness. It performs
a predicate-based partition of the dataset into disjoint subsets of (subject, object)
pairs, which are compressed as (sparse) binary matrices using k2-trees [3]. The most
recent RDF compressor is RDFCSA [2]. It revisits compressed suffix-arrays to index
triples as cyclic strings. Although it does not report the best compression ratios, it

offers stable and predictable times to solve SPARQL triple patterns. This feature
drives us to choose RDFCSA as the core of our current approach.

3 Self-Indexing RDF archives (v-RDFCSA)

v-RDFCSA is designed as a lightweight Tb approach which encodes independently i)
the set of different triples in the archive, and ii) their versioning information. A self-
index is chosen for triples, and succinct bitsequences are used for versions. We design
efficient retrieval algorithms which exploit RDFCSA [2] self-indexing capabilities for
accessing the compressed triples, and then perform bit-based operations on versioning
information. Compression decisions and retrieval algorithms are explained below.

RDF triples encoding

v-RDFCSA manages only the set of different triples in the archive. These version-
oblivious triples [7] are a small fraction of the total triples, e.g. the BEAR archive [7]
contains ≈ 2 billion triples, but only ≈ 376 million are version-oblivious. Thus, the
problem of RDF triples encoding is reduced to the compression of version-oblivious
triples, as a regular RDF dataset. We choose RDFCSA [2], a self-index based on
Sadakane’s Compressed Suffix Array (CSA) [16], which indexes a set of triples rather
than a text, and retains CSA functionality for pattern searching.

RDFCSA first performs the dictionary transformation on the original triples. It
replaces RDF terms by integer IDs in ranges [1, ns] for subjects, [1, np] for predicates,
and [1, no] for objects. Figure 2 (left) shows the set of version-oblivious triples used
in the archive described before. It comprises n = 5 different triples which, in the
middle, are transformed into their ID-based representation1 (mappings between RDF
terms and IDs are independently indexed using compressed string dictionaries [14]).

The right side of the figure illustrates the four steps to turn ID-based triples into an
RDFCSA self-index. The sequence Sid, in step 1, organizes the list of sorted ID-triples.
The first triple is stored in Sid[1, 3], the second in Sid[4, 6], and so on. Triple IDs are
rewritten in step 2 to avoid ID overlappings between subjects, predicates, and objects.
Subject values are not changed, so their IDs are in [1, ns]. Predicate IDs range now
from [ns+1, ns+np], and object values are in [ns+np, ns+np+no]. For instance, the
triple (1, 1, 2) is transformed into (1, 5, 8). This ID rearrangement ensures that subject
IDs are smaller than predicate IDs, and that these are smaller than object IDs. This
fact leads to a particular suffix array configuration (step 3) where subjects appear in
SA[1, n], predicates in SA[n+1, 2n], and objects in SA[2n+1, 3n]. This suffix array
is finally compressed, in step 4, using CSA structures: D and ψ [16]. D[1, n] is a
bitmap where 1 bits mark the first suffix in SA starting with each different symbol
in the alphabet. On the other hand, the array ψ[1, n] enables the suffix array to be
traversed by exploiting that SA[ψ[i]] = SA[i] + 1. That is, if SA[i] = j points to the
suffix S[j, n], then SA[ψ[i]] = j + 1 points to the next text suffix S[j + 1, n].

RDFCSA modifies ψ[2n + 1, 3n], the region encoding jump information from ob-
jects. Originally, ψ allows for jumping from the object of the kth triple to the subject

1Note that ns = 4, np = 2, no = 3, and IDs 1 and 2 are used both for subject and objects.

Figure 2: Step-by-step RDFCSA construction for the RDF archive.

Bv
1 0 1 1 0 1

Bv
2 0 1 0 1 0

Bv
3 1 0 0 0 1

Triples
1 2 3 4 5 tpv V

e
rsio

n
s

1

2

3

Bt
1

0 1 1 0 1

0 1 0 1 0

1 0 0 0 1

Triples
1 2 3 4 5 vpt V

e
rsio

n
s

1

2

3

Bt
2 Bt

3 Bt
4 Bt

5

Figure 3: Version information encoding for the RDF archive.

of the (k+1)th triple. It is not useful for SPARQL needs because it relates two inde-
pendent triples. RDFCSA modifies ψ so that values ψ[2n+1, 3n] point to the subject
of the same triple. That is, ψ[i]← ψ[i]− 1, ∀i ∈ [2n+1, 3n] (or ψ[i]← n if ψ[i] = 1).

D and ψ allow SPARQL triple patterns to be resolved by an initial binary search
followed by a traversal to recover the matching triples ([2] describes these algorithms).

Version information encoding

A subtle yet interesting feature of RDFCSA is that it allows any triple to be identified
by the position of its subject within SA. If (sa,pb,oc) is the kth triple (1 ≤ k ≤ n),
we can recover it by retrieving its subject as2 sa ← S[SA[k]], its predicate as pb ←
S[SA[ψ[k]]], and its object as oc ← S[SA[ψ[ψ[k]]]].

We propose two encoding strategies which exploit this feature to store versioning
data. Let us assume an archive A which comprises N different versions and a set of
n version-oblivious triples. The first encoding strategy (called tpv: triples per ver-
sion) uses N bitsequences Bvi [1, n] to encode what triples appear in the corresponding
version i. That is, if Bvi [k] = 1, it means the kth triple appears in the ith version;
otherwise Bvi [k]← 0 is set. Figure 3 (left) illustrates the tpv encoding for the example
archive (e.g. the 2nd version contains triples 2, and 4). Our second strategy (called
vpt: versions per triple) considers n bitsequences Bti [1, N] to encode versions where
the kth triple occurs. If Btk describes the k

th triple, then Btk[i] = 1 means the kth triple
ocurrs in the ith version; otherwise, we set Btk[i]← 0. Figure 3 (right) illustrates vpt
encoding for the example archive (e.g. the 2nd triple is used in versions 1, and 2).

Note that tpv includes N bitsequences of n bits, and vpt uses n bitsequences of
N bits. Thus, both strategies use N ∗ n bits. However, they show an asymmetric
performance for retrieval purposes. We explain the corresponding algorithms below.

Retrieval algorithms

This explanation leaves apart dictionary management and assumes queries and their
results are composed of the IDs that make up Sid in Figure 2. First, all our algorithms

2Recall S[SA[i]] = rank1(D, i), where rank1 indicates the number of ones in D[1, i].

query RDFCSA to retrieve all candidate triples that match a given pattern Q′. We
keep track of all positions SA[k] where the subject of each candidate triple appears
in the suffix array. From there on, a traversal of the candidate triples uses versioning
information to check: if the kth triple occurs in version i (Mat(Q′, i)); if a triple
changes from version i to j (Diff(Q′, i, j)); or to gather all the versions in which
such triple occurs (V er(Q′)). Note that, the subjects of all candidate triples for
operations (s??), (sp?) and (spo) make up a contiguous range suffix array SA[l, r]
[2]. This allows us to optimize the access to versioning data during triples traversal.

Version materialisation queries: Mat(Q′, i), retrieves triples matching Q′ in
a given version i. Once subject positions are retrieved from RDFCSA, we use the
versioning information to discard triples that do not occur in version i. For vpt, each
candidate triple k is checked by accessing to the bitsequence Btk. If Btk[i] = 1 that
triple is returned; otherwise it is discarded. tpv performs similarly: if Bvi [k] is set
to 1, we return the triple pointed to from SA[k]; otherwise it is discarded. Patterns
(s??), (sp?) and (spo) can be optimized in tpv, since the subjects of the candidate
triples are contiguous in SA[l, r]. Let cl ← rank1(Bvi , l) and cr ← rank1(Bvi , r), the
number of active triples for version i in range [l,r] is c = cr−cl+1. Thus, we can solve
Mat(Q′, i) by only returning triples at positions k ← select1(B

v
i , j), ∀j ∈ [cl, cr]

3.

Delta materialisation queries: Diff(Q′, i, j), looks for triples that match Q′ and
have been changed (either added or removed) between versions i and j. Again, the
algorithm queries RDFCSA to retrieve all the candidate triples that match Q′, and
then, for each candidate triple (whose subject is pointed to from SA[k]), its versioning
information is processed. For vpt, it implies two accesses to Btk. We retrieve bit values:
x← Btk[i] and y ← B

t
k[j], that indicate if triple k occurs in versions i and j. Similarly,

in the case of tpv approach, we gather values x← Bvi [k] and y ← B
v
j [k]

We use operators xor and and to check each candidate triple: i) if (0 6=
((x xor y) and x)) the triple was active in version i and removed in version j, so it
is returned as a removed triple. ii) if (0 6= ((x xor y) and y)) the triple was not in
version i but it is active in version j (it is returned as an added triple). iii) Otherwise,
the candidate triple is discarded.

There is room for optimization in tpv when candidate triples are consecutive in
SA[l, r]. Being a bitsequence B, let getNext1(B, pos) be a function that returns
pos if B[pos] = 1; otherwise, it returns the position of the next 1 after pos in B as
select1(B, 1 + rank1(B, pos)). Given the range [l,r], and using getNext1 function,
we can solve Diff(Q′, i, j) in tpv as follows. We set p1 ← getNext1(Bvi) and p2 ←
getNext1(Bvj). Then, we traverse in parallel Bvi and Bvj at positions with ones p1
and p2, while it holds ((p1 ≤ r) or (p2 ≤ r)). At each iteration, we check: i)
if (p1 < p2) then triple at position p1 is removed in version j, and we set p1 ←
getNext1(Bvi , p1); ii) if (p2 < p1) then triple at position p2 is added in version j,
and we set p2 ← getNext1(Bvj , p2); iii) otherwise, we set p1 ← getNext1(Bvi , p1),
p2 ← getNext1(Bvj , p2), and continue with the next iteration.

3Given a bitsequence B, p← select1(B, j), indicates the position p of the jth one in B.

Version queries: V er(Q′), retrieves all triples matching Q′, and for all of them,
returns the list of versions in which they were active. Thus, for each candidate triple
k, we check if such triple appears in the ith version. That is, ∀i ∈ [1, N], we check
either if bit Btk[i] is set to 1 for vpt approach, or if bit Bvi [k] is set to 1 in tpv approach.
Optimizations are also possible for triple patterns (s??), (sp?) and (spo) in tpv. We
could iterate over the N version bitsequences Bvi , i ∈ [1, N]; for each of them, we set
p ← l, and then use an inner loop that, while p ≤ r, computes p ← getNext1(Bvi , p)
and reports that triple p is active at version i.

4 Experiments

We evaluate v-RDFCSA using BEAR [7], an benchmark that provides an RDF archive,
retrieval queries and a baseline archiving implementation. The BEAR archive con-
tains an heterogeneous corpus of 58 versions with a total of |A| = 2, 073 million
triples, 376 millions of version-oblivious triples, and 3.5 millions of triples appearing
in all versions. In turn, a mean of 31% triples changes between versions, and version
sizes grow from ≈ 33 million triples in |V0| to ≈ 66 millions in |V57|. The raw archive
size (in NTriples) is 325GB, and it can be reduced up to 23GB using gzip.

BEAR also contains a varied set of Mat, Diff , and V er queries. For a fair
comparison, it designs queries which return a similar number of results per version,
and classifies them into QL (low number of results), and QH (high number of results).
For each class, it provides queries for subject: (s??), predicate: (?p?), and object
lookups: (??o). Thus, the query set considers six scenarios: QS

L, Q
P
L , Q

O
L describe

queries with low cardinality, and QS
H , Q

P
H , Q

O
H with high cardinality for subject,

predicate, and object lookups respectively. BEAR provides 50 different queries for
each scenario, except for predicates (6 and 10 queries for QP

L and QP
H respectively).

Finally, BEAR deploys a baseline archiving system based of Jena TDB store4,
which implements the three archiving strategies described above: i) Jena-Ic indexes
each version in an independent store; ii) Jena-Cb creates an index for added and
deleted statements per version; and iii) Jena-Tb uses two named graphs per version,
annotating when each triple is added or deleted and indexes all in a single TDB store.

We implemented v-RDFCSA in C, considering two v-RDFCSA variants (implement-
ing vpt and tpv strategies) which tune their RDFCSA self-index with ψ sampling
tψ = {16, 64, 256}. Versioning information is stored in plain form or compressed with
RRR [15]. Note that RRR is not able to achieve compression when it is directly ap-
plied to individual vpt bitsequences. Thus, we concatenate all vpt bitsequences and
create a single RRR to compress them. Additionally, we exploit rank/select features
of RRR to test optimized subject lookups in tpv-RRR-OPT.

All experiments were performed on an Intel Xeon E5-2650v2 @ 2.60GHz (32 cores),
256GB RAM. Debian 7.8, and our prototype is compiled using gcc 4.7.2 (option -O9).

v-RDFCSA space/time tradeoffs. We first study v-RDFCSA performance for all its
variants. We only show the most representative results for lack of space. On the one
hand, we choose those scenarios using high cardinality queries because they report

4https://jena.apache.org/documentation/tdb/

 1

 10

 100

 1000

 10000

 3 3.5 4 4.5 5

su
b
je

ct
 l

o
o
k
u
p
 p

er
fo

rm
an

ce
 (

u
se

cs
/q

u
er

y
)

Space (GB)

MAT queries
vpt
tpv

vpt-RRR
tpv-RRR

tpv-RRR-OPT

 1

 10

 100

 1000

 10000

 3 3.5 4 4.5 5

Space (GB)

DIFF queries
vpt
tpv

vpt-RRR
tpv-RRR

tpv-RRR-OPT

 1

 10

 100

 1000

 10000

 3 3.5 4 4.5 5

Space (GB)

VER queries

vpt
tpv

vpt-RRR
tpv-RRR

tpv-RRR-OPT

 1

 10

 100

 1000

 10000

 100000

 3 3.5 4 4.5 5

o
b

je
ct

 l
o

o
k

u
p

 p
er

fo
rm

an
ce

 (
u

se
cs

/q
u

er
y

)

Space (GB)

MAT queries
vpt
tpv

vpt-RRR
tpv-RRR

 1

 10

 100

 1000

 10000

 100000

 3 3.5 4 4.5 5

Space (GB)

DIFF queries
vpt
tpv

vpt-RRR
tpv-RRR

 1

 10

 100

 1000

 10000

 100000

 3 3.5 4 4.5 5

Space (GB)

VER queries

vpt
tpv

vpt-RRR
tpv-RRR

Figure 4: Subject (top) and object (bottom) lookups: Mat, Diff , and V er queries.

similar conclusions than for low cardinality queries. On the other hand, we discard
predicate lookups because their numbers are just between subject and object ones.

Figure 4 summarizes space/time tradeoffs for v-RDFCSA. Space requirements (in
GB) are described on the X axis, and query times (in µs per query) on the Y axis.
Focusing on space requirements, plain vpt and tpv variants need 4.54− 4.95GB (the
space increases from tψ = 256 to tψ = 16), but using RRR reduces up to 3.38−3.79GB
(tpv) and 3.59 − 4.00GB (vpt). It demonstrates that versioning information is also
compressible, and compressed bitsequences can save more than 1GB in the best case.
However, RRR times are slower than those reported on plain bitsequences. Even so,
they compete for Mat and Diff queries, but the difference is more important for
V er queries. The comparison among vpt and tpv shows that they perform similarly
for subject lookups due to the locality of accesses to the bitsequences in both con-
figurations. The difference increases for object lookups due to candidate results are
scattered in the suffix array, meaning more cache misses in bitsequence accesses. This
fact discovers what bitsequence configuration is better for each class of query. On the
one hand, tpv is the fastest choice for Mat and Diff queries because it only checks
one or two versions respectively. On the other hand, vpt leads the comparison for
V er queries, in which all versions are checked for all triples retrieved from RDFCSA.

For subject queries, tpv averages 14-91µs and 17-118µs, for Mat and Diff in-
dividual operations, and tpv-RRR-OPT 22-95µs and 32-128µs, respectively. In V er
queries, vpt averages 120-660µs and tpv-RRR-OPT reports 539-1055µs. Regarding ob-
ject queries, higher times are reported because of the greater complexity of resolving
such queries in RDFCSA. In this case, plain tpv averages 99-250µs and 115-307µs,
for Mat and Diff operations, and tpv-RRR 189-338µs and 281-470µs, respectively.
For V er queries, vpt needs 1.1-5.6ms per query whereas vpt-RRR reports 5.2-9.8ms.

 0.01

 0.1

 1

 10

 100

 0 10 20 30 40 50

q
u
er

y
 t

im
e

in
 m

il
li

se
co

n
d
s

Versions

MAT queries

Jena-IC

Jena-TB

Jena-CB

tpv

tpv-RRR-OPT

 0.01

 0.1

 1

 10

 100

 0 10 20 30 40 50

Versions

DIFF queries

Jena-IC

Jena-TB

Jena-CB

tpv

tpv-RRR-OPT

 0.01

 0.1

 1

 10

 100

 1000

Jena-IC Jena-TB Jena-CB vpt vpt-RRR

VER queries

 0.01

 0.1

 1

 10

 100

 0 10 20 30 40 50

q
u
er

y
 t

im
e

in
 m

il
li

se
co

n
d
s

Versions

MAT queries

Jena-IC

Jena-TB
Jena-CB

tpv

tpv-RRR

 0.01

 0.1

 1

 10

 100

 0 10 20 30 40 50

Versions

DIFF queries

Jena-IC

Jena-TB

Jena-CB

tpv

tpv-RRR

 0.01

 0.1

 1

 10

 100

 1000

Jena-IC Jena-TB Jena-CB vpt vpt-RRR

VER queries

Figure 5: Subject (top) and object (bottom) lookups: Mat, Diff , and V er queries.

Comparison with the baseline. We compare v-RDFCSA variants (with tψ = 64,
which provides a balanced space/time tradeoff) with the Jena baseline deployed in
BEAR. For a fair comparison, we integrate a standard Front-Coding dictionary [14] to
transform ID result sets into RDF terms. Thus, we deliver the same result sets as the
Jena baseline. This dictionary adds 2.3GB on top of v-RDFCSA space requirements.

v-RDFCSA shows important space improvements against the baseline. Our variants
use ≈ 5.7-7.3GB, whereas Jena-Ic, Jena-Cb, and Jena-Tb need 225GB, 196GB, and
353GB, respectively. These important space savings are complemented with a highly
efficient query performance. Figure 5 compares query performance for subject and
object lookups with high cardinality. The Mat plot (left) shows average query times
(Y axis) for each version in the archive (X axis), whereas, the Diff plot (middle)
provides average query times for diffs between the initial version and increasing in-
tervals of 5 versions (as defined in BEAR). For clarity on v-RDFCSA, we only include
tpv and tpv-RRR(-OPT) lines in these plots because all our variants overlap on the
same order of magnitude. Finally, the right plot shows the average query times of
V er queries, considering our vpt variants on v-RDFCSA.

Jena-Ic is clearly the best choice from the baseline, although its performance is
similar to Jena-Tb for V er queries. However, our variants get more than one order
of magnitude ahead over the baseline approaches for Mat and Diff queries (subject
and object lookups). Jena-Ic reports times in the orders of 1-4ms/query whereas
v-RDFCSA reports 0.1-0.4ms/query. The comparison is similar for V er queries, al-
though our advantage is slightly lower in object lookups. Our best variant (vpt)
reports 0.5ms/query and 3.5ms/query for subject and object lookups, whereas Jena-
Tb needs 61.5ms/query and 73.5ms/query respectively.

In conclusion, v-RDFCSA demonstrates that managing RDF compressed archives
is not only an advantage in terms of space, but also in query performance.

5 Conclusions and Future Work

This paper presents v-RDFCSA, to the best of our knowledge, the first native strategy
to manage and query RDF archives in compressed space. Our approach, built on
an RDFCSA self-index, proposes two bit-based strategies to compress versions in
RDF archives and provides retrieval functionalities. A deep evaluation with BEAR,
a state-of-the-art benchmark for RDF archives, shows that both v-RDFCSA variants
outperform a reference baseline by reducing space requirements up to 60 times and
performing more than an order of magnitude faster for query resolution.

These results open up interesting issues for future. Our on-going work focuses on
exploiting our current achievement to serve advanced SPARQL queries which increase
v-RDFCSA retrieval functionality for practical purposes.

6 References

[1] S. Álvarez-Garćıa, N. Brisaboa, J.D. Fernández, M.A. Mart́ınez-Prieto, and
G. Navarro. Compressed Vertical Partitioning for Efficient RDF Management. Knowl.
Inf. Syst., 44(2):439–474, 2015.

[2] N. Brisaboa, A. Cerdeira, A. Fariña, and G. Navarro. A compact RDF store using
suffix arrays. In Proc. of SPIRE, pages 103–115, 2015.

[3] N. Brisaboa, S. Ladra, and G. Navarro. Compact Representation of Web Graphs with
Extended Functionality. Infor. Syst., 39(1):152–174, 2014.

[4] I. Dong-Hyuk, L. Sang-Won, and K. Hyoung-Joo. A Version Management Framework
for RDF Triple Stores. Int. J. Softw. Eng. Know., 22(1):85–106, 2012.

[5] J. D. Fernández, A. Polleres, and J. Umbrich. Towards Efficient Archiving of Dynamic
Linked Open Data. In Proc. of DIACHRON, pages 34–49, 2015.

[6] J.D. Fernández, M.A. Mart́ınez-Prieto, C. Gutiérrez, A. Polleres, and M. Arias. Binary
RDF Representation for Publication and Exchange. J. Web Semant., 19:22–41, 2013.

[7] J.D. Fernández, J. Umbrich, and A. Polleres. BEAR: Benchmarking the Efficiency of
RDF Archiving. Technical report, 2015. Available at http://epub.wu.ac.at/4615/.

[8] D. Gomes, M. Costa, D. Cruz, J. Miranda, and S. Fontes. Creating a Billion-scale
Searchable Web Archive. In Proc. of WWW Companion, pages 1059–1066, 2013.

[9] R. González, S. Grabowski, V. Mäkinen, and G. Navarro. Practical implementation of
rank and select queries. In Proc. of WEA, pages 27–38, 2005.

[10] S. Harris and A. Seaborne. SPARQL 1.1 Query Language. W3C Recomm., 2013.
http://www.w3.org/TR/sparql11-query/.

[11] T. Käfer, A. Abdelrahman, J. Umbrich, P. O’Byrne, and A. Hogan. Observing Linked
Data Dynamics. In Proc. of ISWC, pages 213–227, 2013.

[12] M. Klein, D. Fensel, A. Kiryakov, and D. Ognyanov. Ontology Versioning and Change
Detection on the Web. In Proc. of EKAW, pages 197–212, 2002.

[13] F. Manola and E. Miller. RDF Primer. W3C Recomm., 2004. www.w3.org/TR/rdf-primer/.
[14] M.A. Mart́ınez-Prieto, N. Brisaboa, R. Cánovas, F. Claude, and G. Navarro. Practical

Compressed String Dictionaries. Infor. Syst., 56:73–108, 2016.
[15] R. Raman, V. Raman, and S. Rao. Succinct indexable dictionaries with applications

to encoding k-ary trees and multisets. In Proc. of SODA, pages 233–242, 2002.
[16] K. Sadakane. New Text Indexing Functionalities of the Compressed Suffix Arrays. J.

Algorithm, 48(2):294–313, 2003.
[17] M. Vander Sander, P. Colpaert, R. Verborgh, S. Coppens, E. Mannens, and R. Van de

Walle. R&Wbase: Git for Triples. In Proc. of LDOW, 2013. CEUR-WS 996, paper 1.

