
Knowledge and Information Systems manuscript No.
(will be inserted by the editor)

The largest empty circle with location constraints in
spatial databases

Gilberto Gutiérrez · Juan R. López · José

R. Paramá · Miguel R. Penabad

Received: date / Accepted: date

Abstract Given a set S of points in the two-dimensional space, which are stored
in a spatial database, this paper presents an efficient algorithm to find the empty
circle, in the area delimited by those points, with the largest area and containing
only a query point q.

Our algorithm adapts previous work in the field of computational geometry to
be used in spatial databases, which require to manage large amounts of data. To
achieve this objective, the basic idea is to discard a large part of the points of S,
in such a way that the problem can be solved providing only the remaining points
to a classical computational geometry algorithm that, by processing a smaller
collection of points, saves main memory resources and computation time.

The correctness of our algorithm is formally proven. In addition, we empirically
show its efficiency and scalability by running a set of experiments using both
synthetic and real data.

Keywords Spatial databases · query processing · geographical information
systems · largest empty circle.

1 Introduction

Spatial databases (SDBs) are a core component of geographical information sys-
tems (GISs). With respect to classical databases, the geographical component re-

For the first author, this work was supported by the research projects DIUBB [140515 3/R;
142719 3/R]s and MECESUP [UBB0704]. For the rest of authors by Ministerio de Economı́a
y Competitividad (PGE and FEDER) under grants [TIN2016-78011-C4-1-R, TIN2013-46238-
C4-3-R] and Centro para el desarrollo Tecnológico e Industrial under grants [IDI-20141259,
ITC-20151305, ITC-20151247]. The authors also want to thank Boaz Ben Moshe for sharing
his Java Delaunay code and for kindly answering our questions.

Juan R. López · José R. Paramá · Miguel R. Penabad
Universidade da Coruña, Facultade de Informática, CITIC, Campus de Elviña, 15071 A
Coruña, Spain E-mail: {juan.ramon.lopez, jose.parama, miguel.penabad}@udc.es

Gilberto Gutiérrez
Universidad del B́ıo-B́ıo, Computer Science and Information Technologies Department,
Chillán, Chile E-mail: ggutierr@ubiobio.cl

2 Gilberto Gutiérrez et al.

quires the design of new data structures, spatial access methods, query languages,
and algorithms to manage large amounts of this type of information. Computa-
tional geometry is an important source of knowledge and algorithms, thus many
query types included in SDBs are problems that were first tackled in this field.
However, the inclusion of these new queries in SDBs requires further developments,
mainly due to the management of huge amounts of data.

Finding large empty areas in a space that contains a set of points is a well known
problem in computational geometry. The target is to find the largest geometrical
figure that contains no points [45,34,1,36,12,4,2,31,33,18].

This work deals with the Largest Empty Circle (LEC) problem in a space
containing a set S of points, which obtains the LEC having its center in the
convex hull of S. The convex hull of a set of points in the two-dimensional space
is the smallest convex polygon that contains S. The LEC problem is sometimes
referred to as the Toxic Waste Dump Problem or Obnoxious Facility Location [4]:
given a set of cities, the less hazardous place to dump a toxic waste would be the
place that maximizes the distance to any of those cities. That place would be the
center of the LEC [45].

The LEC problem, as most of the computational geometry problems described
above, has two variants: (a) find the LEC with no constraints, and (b) find the
LEC that contains a point q that does not belong to the set S. This point is known
either as the query point or as a location constraint for the LEC. Figure 1 shows
an example of the two versions of the problem.

(a) Largest empty circle. (b) Largest empty circle containing only
a query point (the triangle).

Fig. 1 Two variants of the LEC problem.

In this paper, we deal with the second version of the problem, because the
inclusion of this constraint can be of interest to solve some kinds of problems.
For example, consider a scientist who desires to find a location for a prospection
that requires the use of explosives. Assume that she has access to a system that
stores the locations of villages, isolated houses, etc., as points. Note that if she
asks for the largest empty circle, the answer could be in an area not suitable,
because, for example, the soil does not have the adequate characteristics, the land

The largest empty circle with location constraints in spatial databases 3

is protected, etc. Instead, it is likely that she has a list of candidate placements for
her prospection. Therefore, the best option is to mark a point at each candidate
placement, and issue a LEC query at each of those points. From all the resulting
empty circles, she will be able to chose the best option (probably the one with the
biggest area) with the goal of disturbing the fewest possible people.

Apart from GIS and SDBs, this problem is also of interest in the field of sensor
networks [3], specifically to design algorithms to deploy sensors [14,20,47], to solve
coverage problems [13], or to design routing protocols [44]. Other fields where the
LEC problem has applications are very-large scale integration circuits [30] or data
mining [19].

Very efficient algorithms have been developed in the area of computational
geometry to solve the LEC problem. However, those solutions always assume that
the data fits in main memory, something that in SDBs (and thus GIS) is not
usually feasible. Moreover, focusing on the case of the LEC containing only a
query point, the computational geometry approach is even more inadequate for
SDBs. The algorithms in [31,3,29] require a preprocessing phase which builds a
data structure that, once built, is capable of fastly answering queries (in most
cases in O(log n) time) for any given query point. That preprocessing is costly
and requires to keep the resulting data structure in memory in order to be able
to answer queries. The algorithm of Kaplan and Sharir [31] requires O(n log2 n)
time to build the data structure, which needs O(n log n) space, Agustine et. al.
[3] propose two algorithms, with O(n3/2 log2 n) and O(n5/3 log n) time complexity,
and O(n3/2 log n) and O(n5/3) space, respectively, and finally, Kaminker and Sharir
[29] show an algorithm that requires O(n log3 n) time and O(n) space. However,
the main problem for SDBs is that the preprocessing builds a data structure for a
given dataset, and after changes in the set of points (due to insertions or deletions),
that data structure is not valid any longer. Due to the costs of the preprocessing
phase, it is not feasible to rebuild the data structure after the insertion or deletion
of a point in the database.

Instead, we present here an approach that relies on typical spatial indexes de-
signed for databases, which have two important features: they adapt their structure
to updates, insertions, and deletions with little effort, and they can be used without
loading all the data structure in main memory. Our algorithm selects a reduced set
of points to solve the problem, with the help of a database spatial index, in order
to speed up the process. We will prove that applying a computational geometry
algorithm to that reduced set of points gives always the correct answer.

As explained, the idea of adapting queries from the computational geometry
field to SDBs is not new. Following this approach, several queries have been pro-
posed in the field of SDBs taking advantage of the presence of a multidimensional
structure [40,10,24,25,28,16,17,26]. This paper presents a similar work that deals
with the largest empty circle containing a query point q, assuming that the points
are indexed by a (hierarchical, dynamic, and multidimensional) spatial index. More
specifically, we present an algorithm that makes use of such a spatial index com-
bined with a computational geometry algorithm to obtain the LEC containing a
query point. We have implemented our algorithm using two spatial indexes: an
R*-tree [8], and a K-D-B-tree [39].

In our experimental section, we compare the efficiency of our algorithm against
a classical setup, which consists in loading all points in main memory and then use
a classical computational geometry algorithm. The results show that our algorithm

4 Gilberto Gutiérrez et al.

is 2.5-981 times faster and require only between 3.71% and 45.03% of the main
memory space required by the computational geometry algorithm.

The outline of the paper is as follows: Section 2 introduces some related work.
Section 3 presents some background and definitions. Section 4 discusses the basic
method to discard points for the computation of the LEC. Section 5 presents
our algorithm. Section 6 shows the results of our experiments. Finally, Section 7
discusses our conclusions and directions for future work.

2 Related work

Obtaining the largest empty geometric figure in a space that contains a set of
points has been an active research field in the last decades. Shamos and Hoey
[43] outlined an algorithm to compute the LEC without location constraints that
runs in O(n log n), being n the number of input points. Toussaint showed that
the algorithm of Shamos and Hoey does not work properly in some cases and
provided a new algorithm keeping the O(n log n) time complexity. Later, in [37],
some optimizations were provided, but keeping O(n log n) complexity. There are
also works in 3D. In this case the algorithms compute the largest empty sphere
[33].

The constrained variant is also an old problem. Moreover, there are several
versions. The largest empty circle only containing a query point is tackled in [31,
3,29], whereas in [5], the LEC is constrained to have only a query line in its
interior. Algorithms to compute the LEC where its center is constrained to be
within a simple polygon [11,45,15] and an arbitrary complex n− gon [45,15] were
also studied.

In the field of SDBs, there are several works that improve a computational
geometry algorithm by means of a spatial index (the following examples use an
R-tree): in [40], it is presented an algorithm that finds the nearest neighbor to
a given point; in [10], it is shown a method to find the convex hull of a set of
points stored in a spatial database; in [28,16,17,26], several algorithms to solve
the k-pairs (k ≥ 1) of nearest neighbors between two sets are presented.

To the best of our knowledge, the LEC problem has not been faced in the field
of SDBs. However, a similar problem, the largest empty rectangle only containing
a query point, was tackled in [25]. Here we apply the same approach described in
that work. There, a spatial index is used to obtain some real points that form a
barrier that the largest empty rectangle cannot cross, and this barrier is used to
reduce the number of input points to a computational geometry algorithm that
computes the largest empty rectangle. However, the barrier used for the rectangle
problem is not valid at all for the case of the circle, and thus we present a method
to delimit the area where the points can be discarded in the case of circles.

3 Background and basics

3.1 Basic definitions

Next, we introduce some definitions that will be used later.

Definition 1 Let S be a set of points in <2 and a query point q /∈ S.

The largest empty circle with location constraints in spatial databases 5

– An empty circle does not contain any point of S in its interior.
– A maximal empty circle (MEC) is an empty circle such that it is not fully

contained in any other empty circle.
– Among the MECs, that with the largest radius is the largest empty circle (LEC).
– A maximal empty circle only containing a query point (QMEC) is a MEC only

containing the query point q.
– The largest empty circle only containing a query point (QLEC) is the QMEC

with the largest radius.

For a given set of points, Figure 1(a) shows the LEC, and Figure 1(b) shows
the QLEC for the same set of points and a query point q.

Definition 2 We say that a circle is supported by a point p, if its boundary contains
p.

Definition 3 Let pi, pj , and pk three points, we denote as Cijk the unique circle
supported by those points.

Definition 4 Given a rectangle R ⊆ <2 and a point p ⊂ R, p divides R in four
quadrants (see Figure 2(a)):

– ULQ(p): the Upper-Left quadrant of p is the rectangle bounded by point p and
the Upper-Left corner of R.

– URQ(p): the Upper-Right quadrant of p is the rectangle bounded by point p

and the Upper-Right corner of R.
– LLQ(p): the Lower-Left quadrant of p is the rectangle bounded by point p and

the Lower-Left corner of R.
– LRQ(p): the Lower-Right quadrant of p is the rectangle bounded by point p

and the Lower-Right corner of R.

Definition 5 Let P be a convex polygon, and let Eij be an edge of P , defined
by two vertices pi and pj . Let q be an external point, such that q ∩ P = ∅. We
say that the edge Eij of P is visible from q if none of the two segments defined
by the pairs of points (q, pi) and (q, pj) do intersect P , except (precisely) in pi or
pj , respectively. Otherwise, it is non-visible. With Vq(P) we will refer to the set of
visible edges of the polygon P from the point q.

An alternative way to check for the visibility of an edge Eij of P is the following:
Eij is visible from q if the line defined by the pair of points (pi, pj) completely
separates P and q in different half-planes.

Figure 2(b) shows a polygon P and a point q. Only the edges of P defined by
the vertex pairs (p1, p2) and (p1, p5) are visible from q. All the other edges (p2, p3),
(p3, p4) and (p4, p5), are non-visible from q. Observe that no point p of P –including
those from the visible edges defined by (p1, p2) and (p1, p5)– can be connected with
q by a line or segment without intersecting at least one of the edges in Vq(P).

Our visibility definition is based in the concept of point visibility polygon from
the computational geometry field [35], which refers to the portion of a polygon P

visible from the point q, with q inside P (that is, q ∩ P 6= ∅). Some authors define
also the term external visibility [46], which refers to the portion of P visible from
a point q in the complement of P (that is, q ∩ P = ∅, which is the scenario of our
definition).

6 Gilberto Gutiérrez et al.

(a) Quadrants defined by a point p. (b) Visible and non-visible edges of
a convex polygon P from a point q.

Fig. 2 Support examples for our definitions.

3.2 Hierarchical and multidimensional spatial indexes

SDBs pose several restrictions over any multidimensional data structure used to
index the data.

– It should be a dynamic structure, allowing efficient insertions and deletions of
keys, in addition to queries.

– The index is expected to be very large, so it will be necessary to store most of
the index on secondary storage.

Many of the spatial indexes that fulfill these requirements are hierarchical
tree structures, where all elements in a subtree are bounded by the k-dimensional
coordinates of its root key. However, conventional hierarchical tree structures, such
as quadtrees [21], kd-trees [9] and many of their variants, do not work well if they
are not completely loaded into main memory. As a response, a family of trees
where the nodes are adapted to the size of a disk page and with a large fanout
appeared, frequently denoted as tree directory [41]. Examples are linear quadtrees
[22], K-D-B-trees [39], or R-trees [27].

A complete survey of index structures for spatial databases can be found in
[6]. This includes data-driven structures, which hierarchically cluster sets of spatial
objects, and space-driven structures, where the space is partitioned into rectangu-
lar cells that contain the objects. R-trees and their variants are examples of the
first type, while grid files, quadtrees, and K-D-B-trees are examples of the second
one. We have used in our experiments an R*-tree (a variant of the R-tree) and a
K-D-B-tree, so we will briefly describe both data structures.

The R-tree [27] is a balanced tree that stores k-dimensional geometric objects.
In inner levels, the objects in the subtrees rooted at a node are represented by
the Minimum Bounding k-dimensional Rectangle (MBR) enclosing them. In this
paper, we focus on 2 dimensions, therefore these MBRs are rectangles with faces
parallel to the coordinate axes.

All leaves are on the same level, and contain (or have pointers to) all the
indexed real points (or objects) of the database. Inner nodes are composed by
entries of the form 〈MBR, ref〉, where ref is a pointer to the child node of the
entry; and MBR is the MBR that spatially encloses the MBRs (or points) in the
subtree rooted at that entry.

The largest empty circle with location constraints in spatial databases 7

Figure 3 shows a space with points, the MBRs enclosing them, and the shape
of an R-tree. Dotted lines denote the MBRs of the entries at the root node. The
rectangles with solid lines are the MBRs enclosing the points of the leaves.

R1

R2 R3

R
11

R
12

R
13

R
14

R
33

R
22

R
23

R
21

R
32

R
31

R1 R2 R3

R31 R32 R33R21 R22 R23R11 R12 R13 R14

Fig. 3 An R-tree.

The original R-tree designed by Guttman [27] follows one heuristic optimiza-
tion: to minimize the area of the MBRs of the inner nodes, while keeping the CPU
cost low. It usually has as a beneficial side effect of minimizing the overlapping
area among the MBRs of inner nodes, although with some geographical distribu-
tion of points it may not be the case. Additionally, R-trees do not consider other
possible optimizations, such as minimizing the margin (the sum of the lengths of
the MBR edges), or storage needs.

Guttman already discussed some variations of the R-tree, mainly trying to
improve the part of the algorithm that splits a node (when inserting a new key into
an already full node). Other variations of R-trees have appeared in the literature.
An exhaustive survey of all variations can be found in [32].

One of the most popular and efficient variations is the R*-tree [8], which tries
to improve the performance of the R-tree in two cases: when a new key is inserted
in a non full leaf node (only the MBR of the chosen node must be recomputed),
and when the insertion is performed on an already full node, and it has to be split.

For the first case, to choose the insertion path for a new element, R-trees
usually take into account only the area parameter (how much the area of the

8 Gilberto Gutiérrez et al.

MBR is increased). The R*-tree also takes into account other parameters, like the
margin (defined as length of the MBR perimeter) and overlapping of MBRs, trying
to minimize all of them. The same parameters (area, margin and overlap) are also
considered for the second case, when splitting a node.

With these optimizations, the R*-tree is commonly accepted as one of the
most efficient versions of the R-tree. For this reason, we have chosen the R*-tree
to perform our experiments.

The K-D-B-tree [39] is another k-dimensional, hierarchical, dynamic index,
which tries to combine the benefits of kd-trees and B-trees [7]. kd-trees are binary
trees and, as such, they are dynamic (allowing insertions and deletions on logarith-
mic time), but they were not designed to work on secondary storage. B-trees, on
the other hand, are well known for their good performance on secondary storage.

The K-D-B-tree is somehow similar to the R-tree. It is a balanced tree, having
all its leaves at the same level. It has two types of nodes or pages: Point pages
(leaves) and Region pages (internal nodes). Each entry (key) in a point page stores
a point and the object it identifies, or a reference to it. Each entry in a region page
stores a region (a concept analogous to the R-tree MBR) and a page id, which is
a pointer to a child node.

The main difference with the R-tree is how the regions are formed. Basically,
it starts with a point page (we can consider an initial “virtual” region that is
the full k-dimensional space) and, as points are added, it becomes full and must
be split into two regions along one of the dimensions. Considering again only 2
dimensions, each region is split either horizontally or vertically into two regions,
which can in turn be split again. All dimensions are usually used cyclically, so, if
one region comes from a vertical split, this region will be split horizontally, and so
on. Regions are always disjoint, and the union of all the regions in a region page is
also a region. Figure 4 shows a conceptual example of a 2-dimensional K-D-B-tree.
The grayed areas represent the regions that are not part of the region page. Note
that points are only present on the leaves or point pages.

Fig. 4 A K-D-B-tree.

The largest empty circle with location constraints in spatial databases 9

3.3 Delaunay triangulation and convex hull

The following concepts are used later in our algorithm.

Definition 6 Let S be a set of points in <2. The Delaunay triangulation of S (see
Figure 5(a)), denoted as Dn(S), is a subdivision of <2 into triangles such that any
two triangles intersect in a common face or not at all, and such that no point in
S is inside any circle passing through the three points defining a triangle.

Definition 7 Let S be a set of points in <2. The convex hull of S, denoted as
H(S), is the smallest convex polygon that contains S (see Figure 5(b)).

(a) Delaunay triangulation. (b) Convex Hull.

Fig. 5 Different elements computed from a set of points.

Lemma 1 Let S a set of points in <2. Let Dn(S) the Delaunay triangulation of S

and H(S) the convex hull of S. The LEC must be supported by the three points defining

a triangle of Dn(S), or only by two, but in this case its center must lie on an edge of

H(S).

Proof: By Theorem 6.25 of [42] and given that the Delaunay triangulation of a
set of points corresponds to the dual graph of the Voronoi diagram. ut

As a reminder, Table 1 shows a brief description of some of definitions intro-
duced in this section.

4 Filtering points

The idea behind our algorithm is to delimit an area around the query point such
that the points in that area are enough to obtain the QLEC. The aim is to provide
those points as input to a classic computational geometry algorithm to compute
the QLEC, whereas the rest are discarded.

The question is how to obtain an area that ensures that the computational ge-
ometry algorithm obtains the same QLEC as if we provide the whole set of points.

10 Gilberto Gutiérrez et al.

QLEC The largest maximal empty circle containing the query point
Supported A circle is supported by a point p, if its boundary contains p.
Cijk The unique circle supported by the three points pi, pj , and pk
ULQ(p) The Upper-Left quadrant of p is the rectangle bounded by point p and

the Upper-Left corner of a rectangle R
URQ(p) The Upper-Right quadrant of p is the rectangle bounded by point p and

the Upper-Right corner of R
LLQ(p) The Lower-Left quadrant of p is the rectangle bounded by point p and

the Lower-Left corner of R
LRQ(p) The Lower-Right quadrant of p is the rectangle bounded by point p and

the Lower-Right corner of R
Vq(P) The set of visible edges of a convex polygon P from an exterior point q.

An edge Eij of P is visible from q if the line defined by its vertices
completely separates q from P in different half-planes

Dn(S) The Delaunay triangulation of a set of points S
H(S) The convex hull of a set of points S

Table 1 Definitions.

Obviously, we want to keep that area as small as possible, since the smaller the
area, the fewer points will be provided to the computational geometry algorithm,
and thus better running times and less memory consumption will be obtained.

Our method is based on identifying three points defining a triangle that encloses
the query point. Those points represent a barrier that any empty circle enclosing
the query point cannot cross (although the QLEC is not necessarily supported
by them). Next, we define three circles, each one passing through the query point
and two of the three surrounding points previously identified (see Figure 6). To
compute the solution, the points inside those circles are provided as input to
a classic computational algorithm, together with the points defining the convex
hull, that that might be necessary to adjust the solution (Lemma 1). All the other
points are not necessary and can be discarded.

Lemma 2 Let S be a set of points in a fixed axis-parallel rectangle R ⊆ <2, and let q

be a query point q /∈ S such that q ∩R 6= ∅. Let pi, pj , and pk be three points in S that

define a triangle Tijk enclosing q. Let Sq be the set of points composed by: pi, pj , and

pk, the points in Cqij , Cqjk, and Cqik, and the vertices of H(S). The QLEC obtained

from Sq is the same as the one computed from S using q as query point.

Proof. The target of the proof is to guarantee that Sq contains all the points of S

(the original dataset) needed to obtain the correct answer. By Lemma 1, we must
consider two possible situations:

– The solution (QLEC) is supported by three points from S and the center of
the QLEC lies inside H(S).

– The solution (QLEC) is only supported by two points from S and the center
of the QLEC lies on an edge of H(S).

1. First, we consider the case where the QLEC is supported by three points: pl,
pu and pv. Since q is inside Tijk, two possibilities arise:

– The three points pl, pu, and pv are inside Tijk.
– One or more of the points pl, pu, and pv are outside Tijk.

The largest empty circle with location constraints in spatial databases 11

Fig. 6 Tijk and Cqij , Cqjk, and Cqjk

1.1. In the first case, observe that, by construction, Sq has all the points that
are within Tijk (see Figure 7(a)), and thus it is enough to compute the
QLEC.

1.2. In the second case, as q is inside Tijk, any circle supported by a point
outside Tijk must intersect it to reach q. Let us assume, without loss of
generality, that pu is outside Tijk, and that the edge of Tijk connecting pi
and pk (denoted as Eik) is the one intersected by a line connecting pu and
q (Figure 7(b)).
Observe that, in that scenario, the QLEC should intersect or completely
contain Eik to reach q, keeping always pi and pk as a barrier for its growth.
Indeed, in the best circumstances for the QLEC’s size (assuming that no
other point represents a barrier), it will be supported both by pi and pk.
This can be deduced from the fact that any circle supported by pu, and
containing q, may be expanded by moving its center and/or making its
radius larger, until reaching both pi and pk (Figure 7(b) again).
We are going to prove by contradiction that Sq is enough to compute the
QLEC. Let us suppose that Sq does not contain the point pu, which supports
the QLEC. Then, we know that:

i. Cqik is supported by pi, pk, and q.
ii. Assumption: pu, the point supporting the QLEC, is outside Cqik (or it

would be included in Sq).

Observe that (Figure 8), from the infinite set of circles supported by pi
and pk and containing q, Cqik is the one that covers, with respect to q, the
farthest area towards pu (that is, in the direction of the face of Eik outside
Tijk). Moreover, the farther the circle reaches, the closer to the boundary
becomes q. In fact, q lies on the boundary of (supports) Cqik.

12 Gilberto Gutiérrez et al.

(a) The case when all the three points (pu,
pl, and pv) are inside Tijk.

(b) The case when one point (pu) is outside Tijk.

Fig. 7 The two main cases of the proof.

We have assumed that the QLEC is supported by pu. Now, the three fol-
lowing scenarios are possible:

1.2.1 The QLEC is supported also by both pi and pk (Figure 8).
To reach pu, the QLEC should have a bigger area than Cqik. However,
such a big circle would not contain q. Observe that, if we take Cqik and
try to transform it into the QLEC, we have to move its center towards
pu to make it bigger. This displacement will move the boundary of Cqik

in such a way that q will remain outside that circle (see the dotted circle
in Figure 8). Therefore, we reach a contradiction.

1.2.2 The QLEC is supported by either pi or pk and not by the other point
(Figures 9(a) and 9(b)). Observe that, from the infinite set of circles
supported by pu and, for example, pi, those intersecting Eik will have
pk as a barrier to their growth. In fact, the largest circle of that set

The largest empty circle with location constraints in spatial databases 13

Fig. 8 Some circles supported by both pi and pk

is precisely the one supported by pi and pk. As we have just seen in
item 1.2.1, a circle supported by pu, pi and pk will never reach q (a
contradiction).

1.2.3 The QLEC is supported only by pu, but not by pi nor pk. Then, it must
be supported by any other point p. Observe (Figure 10) that, from the
infinite set of circles supported by pu and p, those intersecting Eik

will have pi or pk as a barrier. In fact, the largest circle of that set is
precisely the one supported by pi (or pk). As we have just seen in item
1.2.2, a circle supported by pu and pi (or pk) will never reach q (again,
a contradiction).

Thus, the initial assumption is false, and pu must be inside Cqik to be able
to support the QLEC. The same reasoning can be applied to the other
points supporting the QLEC, pl and pv.

2. Now, we tackle the case when QLEC is supported by only two points. We know
by Lemma 1 that, from all the infinite circles (with different areas) that could
be supported by those two points, the QLEC must be the one whose center
lies on an edge of H(S). Given that Sq contains, by construction, all the points
defining H(S); and given that, as we have already shown, all the points of S
supporting the QLEC (two points, in this case: lets assume that pu and pv are
those points) will also be included in Sq, we can conclude that Sq contains all
the points needed to compute the QLEC. ut

We have proven that it is safe to use our triangle Tijk in order to filter points.
However, there is one more scenario that we must also consider: the situation when
it is not possible to find three points of S forming a triangle enclosing q. This
occurs when q is outside H(S). Figure 11 shows an example of such a scenario.
Nevertheless, even in these circumstances there can be a QLEC having its center
within H(S). The next lemma tackles this case.

14 Gilberto Gutiérrez et al.

(a) Some circles supported by both pu and pi.

(b) Some circles supported by both pu and pk.

Fig. 9 Different circles supported by either pi or pk.

Lemma 3 Let S be a set of points in a fixed axis-parallel rectangle R ⊆ <2, and let q

be a query point q /∈ S such that q∩R 6= ∅ and q is outside H(S). Let (pi, pj), (pj , pk),

. . ., (pn, pm) be the pairs of points defining all the visible edges of P from q, Vq(H(S)).

Let Sq be the set of points composed by: the points in Cqij , Cqjk, . . . , Cqnm, and the

vertices of H(S). The QLEC obtained from Sq is the same as the one computed from

S using q as a query point.

Proof: We have to prove that with the points inside Cqij , Cqjk, . . . , Cqnm and those
at the vertices of H(S) (which include, pi, pj , pk, . . . , pn, pm), we compute the same
QLEC (if it exists) as if we compute the QLEC using S.

The largest empty circle with location constraints in spatial databases 15

Fig. 10 The circle C is not supported by pi nor pk.

Fig. 11 A query point outside H(S).

By Lemma 1, we know that the QLEC must be supported by two or three
points in S, and that the center c of the QLEC must lie inside H(S) or over one
of its edges. As q is outside H(S), necessarily the QLEC must intersect H(S).

We are going to prove by contradiction that Sq is enough to compute the
QLEC. Let us assume that pu ∈ S is one of the points supporting the QLEC, and
that Sq does not contain pu. In particular, that means that pu must be outside
Cqij to be excluded from Sq.

Since pu is not in Cqij , we know (Definition 5) that the segment connecting pu
and q must intersect Vq(H(S)). Therefore, the QLEC must intersect, or completely

16 Gilberto Gutiérrez et al.

contain, at least one of the visible edges in Vq(H(S)). Let us assume, without loss
of generality, that Eij ∈ Vq(H(S)), defined by the pair (pi, pj), is that edge.

Observe that this scenario is exactly the same as those described in Item 1.2.
(if three points support the QLEC) or Item 2. (if two points support the QLEC)
at the proof of Lemma 2. We have an edge (here, Eij) which separates q and pu.
The QLEC is supported by pu, and must intersect or completely contain Eij to
reach q, with pi and pj acting as a barrier for its growth.

So, we are supposing again that pu is outside Cqij (the circle defined by q

and the edge vertices, pi and pj here), and we can apply the same reasoning used
at Lemma 2 to demonstrate that this situation is an absurd. If pu supports the
QLEC, it must be inside Cqij . Given that we are including in Sq all the points
in Cqij and all the vertices of H(S), Sq contains (by construction) all the points
needed to find the QLEC. ut

Note that in Figure 11, there are two circumferences (Cqij and Cqjk) passing
through two points of the convex hull and the query point. Those circumferences
correspond to the visible edges of H(S) from q. The QLEC, which contains q and
has its center within the convex hull, is supported by pj (a point of the convex
hull) and one other point, both of them in Cqij .

5 q−LEC4n algorithm

q−LEC4n can be divided in two phases:

1. The Filtering phase, that filters out points of the input data set S in order to
obtain a reduced set of points Sq.
Our method for filtering the input points relies on Lemma 2 (when the query
point q is inside H(S)) and Lemma 3 (when q is outside H(S)).

2. The computational geometry phase, that taking as input Sq, runs a classic com-
putational geometry algorithm that obtains the QLEC.

Observe that Lemma 2 and Lemma 3 could be applied directly over the input
points without using a spatial index, but this could be really costly. In the case
of Lemma 2, the three points defining the triangle enclosing q should be as close
to q as possible. This way, the algorithm obtains three circumferences as small as
possible, and the set of points passed to the computational geometry algorithm
is reduced. However, obtaining close neighbors to q without an index requires a
sequential search over the whole set of points. Moreover, it requires to load all the
points into memory.

In addition, we need to compute the convex hull of the input set of points.
Without the aid of a spatial index, this requires already a computational geom-
etry algorithm like the Graham scan [23] or the divide and conquer algorithm in
[38]. These algorithms already have a time complexity O(n log n) and require to
load all the points in main memory, so it would be better to directly apply the com-
putational geometry algorithm that computes the QLEC, which has a O(n log n)
cost.

For these reasons, we take advantage of the spatial indexes defined in Sec-
tion 3.2 to perform the filtering phase. It is important to notice that the spatial
index is maintained by the SDB and directly taken as an input for the algorithm.
Thus, the cost of building and maintaining the index is not considered in our work.

Algorithm 1 shows the pseudocode of q−LEC4n; next we describe it in detail.

The largest empty circle with location constraints in spatial databases 17

Filtering phase

This phase is composed of the following 3 steps (the first 2 correspond to the case
when q is inside H(S) and the third one when it is outside).

Step 1: Using 4NN. Its goal is to obtain, from 4 points close to q, 3 points defining
a triangle that contains q. By using a combination of window query and nearest

neighbor query on the spatial index, the algorithm obtains the nearest point with
respect to q in each of the four quadrants defined by q (see Definition 4); Snn =
{nnURQ(q), nnLLQ(q), nnULQ(q), nnLRQ(q)}. Then, the algorithm computes the
Delaunay triangulation (Dn(Snn)) of Snn.
Figure 12(a) shows the query point q and its 4 nearest neighbors in each quad-
rant. Their Delaunay triangulation is shown in Figure 12(b). In this example,
we can see that there is triangle enclosing q.
However, there can be situations where there is a triangle enclosing q, but it
is not obtained by Step 1. For example, q might have no neighbors in one
quadrant, as shown in Figure 12(d).
If the triangle is not found in Step 1, we proceed to Step 2.

Step 2: Recompute the triangulation including H(S). Add the points defining the
vertices H(S) to Snn, and recompute the Delaunay triangulation.
After Steps 1 and 2, if q is within H(S), it is sure that now there is a triangle
enclosing q. Let us denote this triangle as Tijk. The algorithm defines the three
circles Cqij , Cqik, and Cqjk, using the vertices of the triangle, as shown in
Figure 12(c). Only the points inside these circles, plus H(S), need to be fed as
input to the computational geometry algorithm.
If the triangle is not found, it means that q is outside the convex hull, and we
proceed to Step 3.

Step 3: Use the visible edges of H(S). As shown in Lemma 3, q can be outside
the convex hull, and even so, the QLEC can exist. In this case, the algorithm
traverses the convex hull looking for pairs of points that define segments visible

from q (see Definition 5) and adds all the points of S inside the circles supported
by q plus each of such pairs of points (see Figure 11).

Computational geometry phase

In this phase, Algorithm 1 adds to Sq all the points that define H(S) (if not already
present), and calls the computational geometry algorithm ComputeLEC using only
these points.

The spatial index (R*-tree or K-D-B-tree in our case) is used to speed up
the process, as well as to keep the memory usage low, in several key points: to
search for the 4 nearest neighbors of q; to build the convex hull (we use the depth-

first algorithm of [10]); and to obtain the points inside a circle, filtering out the
rest. This last process is shown in Algorithm 2. The logic of this algorithm is
independent of the spatial index that is used, as long as it is hierarchical, but
the names of the concepts can be different. For this reason, we decided to use
the generic name Area to represent a bounding box that encloses a set of points
and/or other areas. The concept of Area corresponds to the MBR of an R*-tree,
or a Region of a K-D-B-tree.

Algorithm 2 shows how the spatial index is traversed downwards from the root,
and processed level by level. At each non-leaf level, those branches whose areas

18 Gilberto Gutiérrez et al.

(a) nnULQ(q), nnURQ(q), nnLRQ(q), and
nnLLQ(q)

(b) Delaunay triangulation

(c) Cqij , Cqik, and Cqjk (d) No triangle from nearest neighbors con-
tains q

Fig. 12 Elements of the q−LEC4n Algorithm.

are completely outside the three circles are no longer considered. At the last level,
the algorithm deletes the points inside the leaf nodes that were not filtered by the
previous process and that are outside the three circles.

6 Experiments

We have run experiments that execute q−LEC4n coupled with two different spatial
indexes, namely, an R∗-tree and a K-D-B-tree. The results of these two versions
are compared against a baseline, which simply loads all points in main memory by
reading all the disk blocks that store them, and then solves the problem with a
classical computational geometry algorithm.

We used Java as the programming language. For the R∗-tree, we used Marios
Hadjieleftheriou’s Java Implementation.1 For the K-B-D-tree, we used our own

1 The author changed his implementation to C++ http://libspatialindex.github.com/,
however, a slightly modified version of the original Java implementation can be found at
https://github.com/felixr/java-spatialindex.

The largest empty circle with location constraints in spatial databases 19

Algorithm 1 q−LEC4n

1: q−LEC4n(point q, multidimensional index R)
2: INPUT: q and R
3: OUTPUT:QLEC {Largest empty circle only containing q}
4: Let H(S)=convexHull(R) {Obtains from R the convex hull of all the points of S}
5: for each x ∈ (LLQ(q), LRQ(q), URQ(q), ULQ(q)) do {Step 1}
6: Let nnx = computeNearestNeighbor (q, x, R) {Computes the nearest neighbor to q in quad-

rant x}
7: end for
8: Let Snn = {nnURQ(q), nnLLQ(q), nnULQ(q), nnLRQ(q)}
9: Let Dn(Snn) = computeDelaunay(Snn)

10: Let Tijk = extractTriangle(Dn(Snn),q) {Extracts the triangle in Dn(Snn) that contains q}
11: if Tijk = null then {Step 2}
12: Add the points defining H(S) to Snn {Adds the points at the vertices of H(S)}
13: Let Dn(Snn) = computeDelaunay(Snn)
14: Let Tijk = extractTriangle(Dn(Snn),q)
15: end if
16: if Tijk! = null then
17: for all face of Tijk do
18: Let pi and pj the extremes of that face
19: Let Cij the circle passing through pi, pj , and q
20: Let Sij=extractCircle(Cij ,R) {Obtains from R the points of S inside Cij}
21: Add Sij to Sq

22: end for
23: else {Step 3}
24: for all Eij of H(S) {For all edges of the convex hull} do
25: Let pi and pj be the points at the extremes of Eij

26: if Eij is visible from q then
27: Let Cqij the circle passing through pi, pj , and q
28: Let Sij=extractCircle(Cqij ,R)
29: Add Sij to Sq

30: end if
31: end for
32: end if
33: Add the points defining H(S) to Sq

34: Let QLEC = ComputeLEC(Sq , q) {The call to the computational geometry algorithm having
Sq as input}

35: return QLEC

implementation. The computational geometry algorithm (used by both the base-
line and q−LEC4n) that computes the LEC is based on Lemma 1 and uses the
Java Delaunay Triangulation project2 by Boaz Ben Moshe that, to compute the
Delaunay Triangulation of n points, has a worst case of O(n2) time complexity,
yet in practice, it has an amortized time of O(n log n), if you shuffle the points.

All tests were run on an isolated Intel R©Xeon R©-E5520@2.26GHz with 72 GB
DDR3@800MHz RAM with a SATA hard disk model Seagate R© ST2000DL003-
9VT166. It ran Ubuntu R© 12.04.5.

We considered the following sets of points:

1. Sets of 100K3, 250K, 500K, 750K, 1000K, 1250K, and 1500K points with uni-
form and Gaussian distributions.

2. Three real datasets (see Figure 13): Tiger Streams (ts), Tiger Census Blocks
(tcb), and California Roads (ca) datasets, with 194,971 (ts), 556,696 (tcb), and
2,249,727 (ca) points. They were obtained from the chorochronos archive.4

For all the used datasets, we assumed that all data completely fit in main
memory. This is a requirement of the baseline, which simply uses the computational

2 https://code.google.com/p/jdt/
3 1K = 1,000 points
4 http://chorochronos.datastories.org/?q=node/17

20 Gilberto Gutiérrez et al.

Algorithm 2 extractCircle
1: extractCircle(circle C, multidimensional index R)
2: INPUT: C and R {a circle and the multidimensional index}
3: Let E and Ex be sets of Areas (MBRs/Regions)
4: Let P be a set of points
5: Let Arearoot be the Area that covers all the points indexed by R
6: Insert the element Arearoot in E
7: Let l = h− 1 {h is the height of R}
8: while l ≥ 0 do
9: if l > 0 then

10: for each Areai in E do
11: Substitute Areai in E by the Areas in the child node corresponding to its entry {the

node in the next level pointed by the entry containing Areai is read}
12: end for
13: Let Ex the set of Areas of E that are completely outside C
14: Discard from E all the Areas in Ex.
15: else
16: Let P = ∅
17: for each Areai in E do
18: Add to P the points in the children of Areai

19: end for
20: Remove from P the points outside of C
21: return P
22: end if
23: Let l = l− 1
24: end while

geometry algorithm. Both indexes (R∗-tree and K-D-B-tree) were configured to
use a disk block size of 1KB. The performance of all algorithms was measured
comparing the response time (it represents the overall execution time –elapsed
time or wall-clock time– of the algorithms, which is measured in seconds) that
each algorithm required to find the solution. The response time includes the time
required to read the R*-tree nodes, K-D-B-tree nodes, or points, from disk. For
all measures, we computed an average of 1,000 random queries where a solution
exists.

6.1 Real data sets

Table 2 shows the running times with the real data sets. The third and fifth
columns of the table display the time spent by each of the versions of q−LEC4n

(and in parenthesis, the percentage of the global time) during the filtering phase.

q−LEC4n alg. Baseline
R-tree KDB-tree

Complete Filtering Complete Filtering Time
ts 0.24 0.15 (63%) 0.26 0.17 (65%) 0.90
tcb 1.21 0.35 (29%) 1.30 0.41 (32%) 3.23
ca 6.33 0.71 (11%) 6.35 0.73 (11%) 28.14

Table 2 Time (seconds) to obtain the answer. In the case of q−LEC4n, it is also displayed
the time spent during the filtering phase (in parenthesis the percentage of the time to solve
the query spent by the filtering phase).

The largest empty circle with location constraints in spatial databases 21

(a) ts (b) tcb

(c) ca

Fig. 13 The datasets used in the experiments.

Observe that in ca, q−LEC4n is 4.44 times faster (with the R-tree version) than
the baseline, while in tcb the improvement is 2.66 times faster. That difference is
due to two factors: the size of the input to the computational geometry phase and
the distribution of the points.

The size in the larger datasets has a bigger impact in the computational ge-
ometry phase due to its O(n log n) complexity. Therefore, if we are able to reduce
its input size, the gain will be bigger since to reduce the input, our filtering phase
basically only pays a logarithmic cost.

Regarding the distribution of the collection, if it gets closer to an uniform
distribution, q−LEC4n runs faster, since it obtains closer neighbors to the query
point, and thus Cqij , Cqjk, and Cqik will be smaller (and thus, they allow to filter
out much more points).

In ca, we obtain the best improvement (4.44 times), mainly due to the size,
since it is by far the biggest data set. With respect to ts and tcb, although tcb
is bigger than ts, the distribution of points is more uniform in the case of ts, and
thus ts (3.75 times) obtains a better improvement than tcb (2.67 times).

Comparing the results of our algorithm between the different datasets, the
percentage of time taken by the filtering phase is bigger in smaller data sets, and
decreases as the size of the data set grows. The filtering phase suffers less a growth
in the number of input points than the computational geometry phase, given that

22 Gilberto Gutiérrez et al.

the O(n log n) complexity of the computational geometry phase grows faster than
the basically logarithmic cost of the filtering phase.

In these data sets, the R-tree version is slightly faster than the K-D-B-tree
version, therefore the differences have little impact in the overall running time. In
any case, it seems clear that the time spent during the filtering phase is more than
compensated when computing the QLEC using fewer points.

From the 1,000 queries, the third column of Table 3 shows the percentage of
them solved using each of the three steps of the filtering phase. We can observe
that when the data set has larger open areas, this implies that the percentage of
queries that were solved using Step 1 decreases. This is easy to see, given that when
the query point is located in an open area, there are bigger chances of finding one
or more empty quadrants, and also of placing the query point outside the convex
hull. Therefore, in ts, 81.3% of the queries were solved using Step 1, whereas in
tcb was 55.4% and in ca, 69.2%. The fourth and fifth columns of Table 3 give
the average time to obtain the solution, considering the queries solved using each
of the three steps of the filtering phase, and for the two versions of q−LEC4n.
As it can be observed, the improvement in the queries solved using Step 1 is
much higher than with the others. For example, with ca and the R-tree version,
using Step 1, q−LEC4n is almost 35 times faster than the baseline, whereas in
queries solved using Step 3, q−LEC4n is only 18% faster. The reason is easy to
see, when q−LEC4n uses Step 1, it is likely that the query point is placed in a
dense populated area, and thus that the found neighbors will be close enough to
produce small circumferences around the query point. However, in the other cases,
the query point is almost in the border of the convex hull (Step 2) or outside the
convex hull (Step 3), and thus it is likely that the found neighbors will be quite far
away from the query point, and thus the circumferences will be larger. In the ca
dataset, we can see another effect that we will observe in the synthetic datasets,
the K-D-B-tree version is slightly faster than the R-tree version in zones highly
populated, as in the ca dataset when the query is solved using Step 1, that is,
when the query is in a dense populated region (as less empty areas are processed).

Percentage Time
R-tree KDB-tree

ts Step 1 81.3% 0.14 0.16
Step 2 11.6% 0.46 0.49
Step 3 7.1% 0.99 1.02

tcb Step 1 55.4% 0.44 0.47
Step 2 22.8% 1.60 1.70
Step 3 21.8% 2.78 2.98

ca Step 1 69.2% 0.81 0.75
Step 2 15.1% 13.49 13.48
Step 3 15.7% 23.77 24.06

Table 3 Percentage of queries solved using Step 1, Step 2, and Step 3 of the filtering phase and
time (seconds) to obtain the answer considering the queries solved using each of the filtering
steps.

We can see in Table 4 the number of points provided as input to both the
baseline and the computational geometry phase of q−LEC4n. In this table, there

The largest empty circle with location constraints in spatial databases 23

is only one value, as the two versions of q−LEC4n obtain the same amount of
points. In addition, in parenthesis, it is shown the percentage of points used by
q−LEC4n with respect to the total of points (used by the baseline). Again, we
can see the effect of the distribution of the points: with the most uniform data set
(ts), q−LEC4n uses only 11.24% of the points, but in the tcb data set (the least
uniform), the filtering is worse, and thus our algorithm uses 34.52% of the points
to compute the QLEC. In addition, we can see again the effect of the step used in
the filtering phase. The extreme case is ts, where when the query is solved with
Step 1, it is solved using only with 0.88% of the points, whereas, when the query
is solved using Step 3, 98.64% of the points are used to solve the query, and thus,
as seen in Table 3, q−LEC4n is even slower than the baseline.

q−LEC4n Baseline

ts 21,917 (11.24%) 194,971
Step 1 1,731 (0.88%)
Step 2 59,084 (30.30%)
Step 3 192,332 (98.64%)

tcb 192,215 (34.52%) 556,696
Step 1 45,884 (8.24%)
Step 2 264,477 (47.50%)
Step 3 488,506 (87.75%)

ca 536,862 (23.86%) 2,249,727
Step 1 56,101 (2.49%)
Step 2 1,329,024 (59.07%)
Step 3 1,893,997 (84.18%)

Table 4 Amount of points provided as input to both the baseline and the computational
geometry phase of q−LEC4n. In parenthesis, the percentage of the points used by q−LEC4n

with respect to the total. For q−LEC4n, with data disaggregated for the three steps of the
filtering phase.

Besides the impact in the running times, reducing the number of points has
an important impact on memory consumption. As explained before, the baseline
always needs all points of the collection in main memory. Of course, in the case of
q−LEC4n, accessory space is needed, among other things, to process the spatial
index. However, the index never needs to be completely loaded into main memory,
and that space is not critical. This effect can be clearly seen in Table 5, where
we show the amount of memory (in MBs) used by q−LEC4n and the baseline
to compute the final solution. We show the value of the parameter “Maximum
resident set size” of the GNU/Linux command “/usr/bin/time”. For all values, in
parenthesis, it is shown the percentage of memory consumed by q−LEC4n with
respect to the baseline. There is a close relationship between the number of points
used to solve the query and the amount of main memory used. Therefore, again
ts is the data set with smaller percentage of memory consumption with respect to
the baseline, and tcb the worst one.

The data disaggregated by the filtering step shows that, in the case of ts and
Step 3, q−LEC4n uses 98.64% of the points used by the baseline, and then, the
R-tree version uses the 99.31% of the main memory consumption of the baseline.
However, with Step 1, while q−LEC4n uses only the 0.88% of the points, the

24 Gilberto Gutiérrez et al.

R-tree version uses 16.54% of the main memory wasted by the baseline. This
non-proportional decrease is probably due to the chosen programming language.
Java does not allow the programmer to release the memory wasted by unused
variables. Instead, its running environment triggers a “garbage collector” (GC)
that is responsible for releasing the memory reserved for variables that are no
longer used. However, an unused variable or object that maintains a valid reference
will not be released. Additionally, the GC is run when the running environment
decides to do that. The frequency of execution of the GC depends mainly on the
available free memory, generating a lack of control. In our case, after finishing the
filtering phase, all used data structures could be released, and the memory could
be reused by the computational geometry phase. However, the values clearly show
that those structures are not released by the GC, as in the aforementioned case of
ts with Step 1.

Observing Table 5, the next question is why the filtering phase of the K-D-B-
tree version consumes more memory than the R-tree version. The reason is that
during the searches, usually the K-D-B-tree version has to keep more regions in
a data structure (a stack or a sorted heap) to be inspected. For example, when
using the algorithm of Böhm and Kriegel to compute the convex hull with the aid
of the spatial index, the first step requires the points with the maximum values in
the x and y coordinates and the points with the minimum x and y coordinates.
Observe that, for example, to obtain the point with the maximum value in the x

coordinate, when using the R-tree version, the algorithm starts the search from
the root of the tree by choosing the MBR in that node that has the right side more
to the right, since in the R-tree it is sure that there is a point in that side. Then
the algorithm checks the children of that entry, and again, from those MBRs, that
with the right side more to the right is chosen, and so on. Therefore, during the
search, only one MBR is kept. However, in the case of the K-D-B-tree, the sides
of the regions are not so helpful, since many regions can cover the space up to the
limits of the space, and there is not guarantee that a point will be in the sides of
the region. This means that the search must keep several regions in a sorted heap
to be processed in subsequent steps.

6.2 Synthetic data sets

Figure 14 shows the behavior of the algorithms as the size of the collection grows,
considering the synthetic collections. The y axis shows the time using a logarithmic
scale to fit the times of the baseline in the same figure. The x axis shows the number
of points of the collection.

With a uniform distribution, the R-tree version of q−LEC4n is between 23
and 786 times faster than the baseline. The K-D-B-tree version is between 25
and 981 times faster. These values can be misleading (the K-D-B-tree seems much
better), but differences between the two versions are small. With the input dataset
of 1,500,000 points, the times of the two versions only differ in 0.06 seconds.
Considering the Gaussian distribution, as expected, the improvements are smaller,
from 16 up to 227 times faster. The reasons are those already pointed out for the
real datasets. The uniform distribution allows to obtain closer neighbors to the
query point. Moreover, from the 7,000 random queries run in this experiment
(1,000 for each data set), with the uniform distribution only one query was solved

The largest empty circle with location constraints in spatial databases 25

q−LEC4n Baseline
R-tree KDB-tree MBs

ts 222 (25.24%) 358 (40.78%) 878
Step 1 145 (16.54%) 259 (29.47%)
Step 2 359 (40.90%) 545 (62.05%)
Step 3 872 (99.31%) 1,189 (135.50%)

tcb 778 (45.56%) 1,340 (78,54%) 1,707
Step 1 310 (18.17%) 607 (35.55%)
Step 2 1,076 (63.06%) 1,805 (105.76%)
Step 3 1,459 (85.45%) 2,413 (141.37%)

ca 1,903 (26.19%) 3,373 (46.41%) 7,267
Step 1 310 (4.27%) 844 (11.61%)
Step 2 3,518 (48.40%) 5,105 (70.24%)
Step 3 3,447 (47.44%) 6,095 (83.87%)

Table 5 Memory consumption (MBs), in parenthesis the percentage of the memory used by
q−LEC4n with respect to the baseline. For q−LEC4n, with data disaggregated for the three
steps of the filtering phase.

 0.01

 0.1

 1

 10

 100

 1000

100K 250K 500K 750K 1000K 1250K 1500K

T
im

e
(s

ec
on

ds
)

(lo
g

sc
al

e)

Number of points (in thousands)

QLEC4n (R-tree)
QLEC4n (KDB-tree)

Baseline

(a) Uniform

 0.01

 0.1

 1

 10

 100

 1000

100K 250K 500K 750K 1000K 1250K 1500K

T
im

e
(s

ec
on

ds
)

(lo
g

sc
al

e)

Number of points (in thousands)

QLEC4n (R-tree)
QLEC4n (KDB-tree)

Baseline

(b) Gaussian

Fig. 14 Time (seconds) to compute the solution as the size of the collection grows, with
synthetic collections. The y axis is in logarithmic scale.

using Step 2 and none using Step 3. However, with Gaussian distribution 71.5%
were solved using Step 1, 5.19% using Step 2, and 23.31 % using Step 3 and, as
shown in the experiments with real data sets, the improvements in queries solved
with steps 2 and 3 are worse.

Figure 15 shows the time spent by the two versions of q−LEC4n in the filtering
phase. The uniform distribution is the best scenario for q−LEC4n, and among the
two versions, the K-D-B-tree one is better here. Figure 15(a) shows this superiority.
Observe that the gap between the two versions, although small in all cases, gets
bigger as the collection grows. The reason is that all data sets have their points
in the rectangle [0, 0] × [1, 1]. As the size of the collection grows, the density gets
higher, and this favors the K-D-B-tree version. In the Gaussian distribution (Figure
15(b)), we can see the opposite behavior just like in real data sets, where the R-tree
version is better than the K-D-B-tree.

Figure 16 shows the number of points provided as input to the computational
geometry phase of q−LEC4n, and to the baseline. The y axis has a logarithmic

26 Gilberto Gutiérrez et al.

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 0.22

 0.24

 0.26

 0.28

100K 250K 500K 750K 1000K 1250K 1500K

T
im

e
(s

ec
on

ds
)

Number of points (in thousands)

R-tree
KDB-tree

(a) Uniform

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

100K 250K 500K 750K 1000K 1250K 1500K

T
im

e
(s

ec
on

cs
)

Number of points (in thousands)

R-tree
KDB-tree

(b) Gaussian

Fig. 15 Time (seconds) spent during filtering phase as the size of the collection grows, with
synthetic collections.

scale in order to be able to fit the values of the baseline. Again, in this figure,
we can observe that q−LEC4n is more successful with uniform distributions: to
obtain the final answer, in the case of the uniform distribution, our algorithm uses
between 0.15% and 0.87% of the input points, whereas in the case of the Gaussian
distribution, our algorithm uses between 7.38% and 11.19% of the input points.

 100

 1000

 10000

 100000

 1e+006

 1e+007

100K 250K 500K 750K 1000K 1250K 1500K

P

oi
nt

s
in

pu
t C

om
p.

 G
eo

. A
lg

or
ith

m
 (

lo
g

sc
al

e)

Number of input points (in thousands)

QLEC4n
Baseline

(a) Uniform

 100

 1000

 10000

 100000

 1e+006

 1e+007

100K 250K 500K 750K 1000K 1250K 1500K

P

oi
nt

s
in

pu
t C

om
p.

 G
eo

. A
lg

or
ith

m
 (

lo
g

sc
al

e)

Number of input points (in thousands)

QLEC4n
Baseline

(b) Gaussian

Fig. 16 Points provided as input to the computational geometry phase of q−LEC4n, and to
the baseline. The y axis is in logarithmic scale.

Finally, Figure 17 shows the memory consumption. Again, the y axis has a
logarithmic scale to fit the values of the baseline. This figure follows the same trend
of previous experiments. The results with the uniform distribution are better, with
the R-tree version, q−LEC4n uses between 3,71% and 24.58% of the memory used
by the baseline, whereas with the Gaussian distribution, the values range between
9.56% and 23.36%. As seen with the real data sets, the R-tree version consumes
much less memory, in most cases around 50% of the memory consumption used
by the K-D-B-tree version.

The largest empty circle with location constraints in spatial databases 27

 100

 1000

 10000

100K 250K 500K 750K 1000K 1250K 1500K

M
B

s
(lo

g
sc

al
e)

Number of points (in thousands)

QLEC4n (R-tree)
QLEC4n (KDB-tree)

Baseline

(a) Uniform

 100

 1000

 10000

100K 250K 500K 750K 1000K 1250K 1500K

M
B

s
(lo

g
sc

al
e)

Number of points (in thousands)

QLEC4n (R-tree)
QLEC4n (KDB-tree)

Baseline

(b) Gaussian

Fig. 17 Memory consumption as the size of the collection grows, with synthetic collections.
The y axis is in logarithmic scale.

7 Conclusions

In this work, we have presented an algorithm to efficiently solve the problem of
finding the largest empty circle containing only a query point q in spatial databases.
Previous solutions to solve this problem were static in-memory solutions, whereas
our solution relies on typical spatial indexes which can work without the need to
store the complete structure in main memory and have the ability to dynamically
adapt their structures to changes in the stored data.

With this algorithm, we open a way for including a new query for spatial
database management systems, since the new algorithm, in addition to improved
running times, consume much less memory than the previous computational ge-
ometry algorithms.

Our experiments show that our algorithm requires much less response time
than the original computational geometry algorithm approach: with real datasets,
in the range of 2.5-4.4 times faster; and with synthetic datasets, 23-981 times faster
(uniform distributions) and 16-227 times faster (Gaussian distributions). Since, in
the real datasets, our algorithm uses 11.24%-34.52% of the points used by the
computational geometry algorithm, the q−LEC4n consumes only between 25.24%
and 78.54% of the main memory consumed by the computational geometry algo-
rithm. In the case of synthetic data sets, q−LEC4n uses between 0.15% and 0.87%
(uniform distributions) and between 7.38% and 11.19% (Gaussian distributions) of
the points used by the computational geometry algorithm, and thus the memory
consumption is between 3.71% and 33.02% (uniform distributions) and between
9.56% and 45.03% (Gaussian distributions) of the main memory consumed by the
computational geometry algorithm.

We also showed that our algorithms scale much better than the computational
geometry algorithm with synthetic datasets.

As future work, we want to extend our proposal to objects with more dimen-
sions.

28 Gilberto Gutiérrez et al.

References

1. Aggarwal, A., Suri, S.: Fast algorithms for computing the largest empty rectangle. In:
Proceedings of Third Annual Symposium on Computational Geometry SCG 1987, pp.
278–290 (1987)

2. Augustine, J., Das, S., Maheshwari, A., Nandy, S.C., Roy, S., Sarvattomananda, S.: Query-
ing for the largest empty geometric object in a desired location. CoRR abs/1004.0558v2
(2010)

3. Augustine, J., Das, S., Maheshwari, A., Nandy, S.C., Roy, S., Sarvattomananda, S.: Lo-
calized geometric query problems. Computational Geometry 46(3), 340 – 357 (2013)

4. Augustine, J., Putnam, B., Roy, S.: Largest empty circle centered on a query line. Journal
Discrete Algorithms 8(2), 143–153 (2010)

5. Augustine, J., Putnam, B., Roy, S.: Largest empty circle centered on a query line. Journal
of Discrete Algorithms 8(2), 143–153 (2010)

6. Azri, S., Ujang, U., Anton, F., Mioc, D., Rahman, A.A.: Review of spatial indexing tech-
niques for large urban data management. In: Proceedings of International Symposium &
Exhibition on Geoinformation ISG 2013 (2013)

7. Bayer, R., McCreight, E.M.: Organization and maintenance of large ordered indexes. Acta
Informatica 1(3), 173–189 (1972)

8. Beckmann, N., Kriegel, H., Schneider, R., Seeger, B.: The R*-tree: An efficient and robust
access method for points and rectangles. In: Proceedings of ACM SIGMOD Conference
on Management of Data, pp. 322–331 (1990)

9. Bentley, J.L.: Multidimensional binary search trees used for associative searching. Com-
munications of the ACM 18(9), 509–517 (1975)

10. Böhm, C., Kriegel, H.P.: Determining the convex hull in large multidimensional databases.
In: Proceedings of the Third International Conference on Data Warehousing and Knowl-
edge Discovery DaWaK 2001, pp. 294–306 (2001)

11. Bose, P., Wang, Q.: Facility location constrained to a polygonal domain. In: Proceedings
of the Latin American Symposium on Theoretical Informatics LATIN 2002, pp. 153–164.
Springer (2002)

12. Chaudhuri, J., N., S.C., Das, S.: Largest empty rectangle among a point set. Journal
Algorithms 46, 54–78 (2003)

13. Cheng, L., Wu, C., Zhang, Y., Wang, Y.: An energy-balance repair scheme in wireless
sensor networks. Journal of Information and Computational Science 8(6), 969–976 (2011)

14. Cheng, M.X., Li, D.: Advances in Wireless Ad Hoc and Sensor Networks. Springer, New
York, NY, USA (2008)

15. Chew, L.P., Drysdale, R.L.S.: Finding largest empty circles with location constraints. Tech.
Rep. PCS-TR86-130, Dartmouth College, Computer Science, Hanover, NH (1986)

16. Corral, A.: Algoritmos para el procesamiento de consultas espaciales utilizando r-trees. la
consulta de los pares más cercanos y su aplicación en bases de datos espaciales. Ph.D.
thesis, Universidad de Almeŕıa, Escuela Politécnica Superior, España (2002)

17. Corral, A., Manolopoulos, Y., Theodoridis, Y., Vassilakopoulos, M.: Algorithms for pro-
cessing k-closest-pair queries in spatial databases. Data & Knowledge Engineering 49(1),
67–104 (2004)

18. Dumitrescu, A., Jiang, M.: Computational geometry column 60. SIGACT News 45(4),
76–82 (2014)

19. Edmonds, J., Gryz, J., Liang, D., Miller, R.J.: Mining for empty spaces in large data sets.
Theoretical Computer Science 296, 435–452 (2003)

20. Filipe, L., Vieira, M., Augusto, M., Vieira, M., Ruiz, L.B., Alfredo, A., Loureiro, F., Silva,
D.C., Otviofernandes, A., Carlos, A.A., mg Brazil, P.B.H.: Efficient incremental sensor
network deployment algorithm. In: Proceedings of Brazilian Symposium on Computer
Networks SBRC 2004 (2004)

21. Finkel, R.A., Bentley, J.L.: Quad trees a data structure for retrieval on composite keys.
Acta Informatica 4(1), 1–9 (1974)

22. Gargantini, I.: An effective way to represent quadtrees. Communications of the ACM 25,
905–910 (1982)

23. Graham, R.: An efficient algorithm for determining the convex hull of a finite planar set.
Information Processing Letters 1, 132–133 (1972)

24. Gutiérrez, G., Paramá, J.R.: Finding the largest empty rectangle containing only a query
point in large multidimensional databases. In: Proceedings of Conference on Scientific and
Statistical Database Management SSDBM 2012, pp. 316–333 (2012)

The largest empty circle with location constraints in spatial databases 29

25. Gutiérrez, G., Paramá, J.R., Brisaboa, N., Corral, A.: The largest empty rectangle con-
taining only a query object in spatial databases. GeoInformatica 18(2), 193–228 (2014)

26. Gutierrez, G., Sáez, P.: The k closest pairs in spatial databases - when only one set is
indexed. GeoInformatica 17(4), 543–565 (2013)

27. Guttman, A.: R-trees: A dynamic index structure for spatial searching. In: Proceedings
of ACM SIGMOD Conference on Management of Data, pp. 47–57 (1984)

28. Hjaltason, G.R., Samet, H.: Incremental distance join algorithms for spatial databases. In:
Proceedings of ACM SIGMOD Conference on Management of Data, pp. 237–248 (1998)

29. Kaminker, T., Sharir, M.: Finding the largest disk containing a query point in logarith-
mic time with linear storage. In: Proceedings of the Thirtieth Annual Symposium on
Computational Geometry SCG 2014, pp. 206:206–206:213 (2014)

30. Kaplan, H., Mozes, S., Nussbaum, Y., Sharir, M.: Submatrix maximum queries in monge
matrices and monge partial matrices, and their applications. In: Proceedings of Symposium
on Discrete Algorithms SODA 2012, pp. 338–355 (2012)

31. Kaplan, H., Sharir, M.: Finding the maximal empty disk containing a query point. In:
Proceedings of the Twenty-eighth Annual Symposium on Computational Geometry SCG
2012, pp. 287–292 (2012)

32. Manolopoulos, Y., Nanopoulos, A., Papadopoulos, A.N., Theodoridis, Y.: R-Trees: Theory
and Applications. Springer-Verlag, London, UK (2006)

33. Mellou, K.: Efficient algorithms for calculating the maximum empty cube in areas with
obstacles. Ph.D. thesis, National Technical University of Athens, Greece (2014)

34. Naamad, A., Lee, D., Hsu, W.L.: On the maximum empty rectangle problem. Discrete
Applied Mathematics 8(3), 267 – 277 (1984)

35. O’Rourke, J.: Art Gallery Theorems and Algorithms. Oxford University Press, Inc., New
York, NY, USA (1987)

36. O’Rourke, J.: Computational Geometry in C. Cambridge University Press, Cambridge,
UK (1998)

37. Preparata, F., Shamos, M.: Computational geometry: an introduction. Springer-Verlag,
New York, NY, USA (1985)

38. Preparata, F.P., Hong, S.J.: Convex hulls of finite sets of points in two and three dimen-
sions. Communications of the ACM 20(1), 87–93 (1977)

39. Robinson, J.T.: The k-d-b-tree: A search structure for large multidimensional dynamic
indexes. In: Proceedings of the ACM SIGMOD International Conference on Management
of Data, pp. 10–18 (1981)

40. Roussopoulos, N., Kelley, S., Vincent, F.: Nearest neighbor queries. SIGMOD Record
24(2), 71–79 (1995)

41. Samet, H.: Foundations of Multidimensional and Metric Data Structures. MorganKauf-
mann, San Francisco, CA, USA (2006)

42. Shamos, M.I.: Computational geometry. Ph.D. thesis, Dept. Computer Sciences, Yale
University (1978)

43. Shamos, M.I., Hoey, D.: Closest-point problems. In: Proceedings of 16th Annual Sympo-
sium on Foundations of Computer Science FOCS 1975, pp. 151–162. IEEE (1975)

44. Stratil, H.: An efficient implementation of the greedy forwarding strategy. In: Proceed-
ings of Informatik 2004, Informatik verbindet, Band 2, Beitrge der 34. Jahrestagung der
Gesellschaft fr Informatik e.V., pp. 365–369 (2004)

45. Toussaint, G.: Computing largest empty circles with location constraints. International
Journal of Computer and Information Sciences 12(5), 347–358 (1983)

46. Valentine, F.A., Buchman, E.: External visibility. Pacific Journal of Mathematics 64(2),
333–340 (1976)

47. Wu, C.H., Lee, K.C., Chung, Y.C.: A delaunay triangulation based method for wireless
sensor network deployment. Computer Communications 30(14-15), 2744–2752 (2007)

