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Abstract

In this paper, we study different approaches for rank and select on sequences of bytes and propose new
implementation strategies. Extensive experimental evaluation comparing the efficiency of the different
alternatives are provided.
Given a sequence of bits, a rank query counts the number of occurrences of the bit 1 up to a given position,
and a select query returns the position of the ith occurrence of the bit 1. These operations are widely used
in information retrieval and management, being the base of several data structures and algorithms for text
collections, graphs, etc.
There exist solutions for computing these operations on sequences of bits in constant time using additional
information. However, new applications require rank and select to be computed on sequences of bytes
instead of bits. The solutions for the binary case are not directly applicable to sequences of bytes. The
existing solutions for the byte case vary in their space-time trade-off which can still be improved.

Keywords: Information retrieval, Algorithms, Succinct data structures, Rank, Select

1 Introduction

Information management generally involves working with large collections of data
from a variety of data types. An important issue in these applications is obtaining
compact representations of information that also make possible its efficient process-
ing. Succinct data structures aim at representing data (e.g., sets, trees, hash tables,
graphs or texts) using as little space as possible while still being able to efficiently
solve the required operations on the data. Self-indexes for text collections [1] and
compressed web graphs [2] are two representative examples of applications of suc-
cinct data structures. Binary sequences and the operations rank and select defined
on them are the base of many succinct data structures:

Given an offset inside a sequence of bits, rank counts the number of times the
bit 0 (resp. 1) appears up to that position. select returns the position in that
sequence where the i-th occurrence of bit 0 (resp. 1) takes place.
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Full-text indexes are a good example in which the performance of these two op-
erations is specially relevant [1]. The importance of these complementary operations
for the performance of succinct data structures has motivated extensive research in
this field [3]. Several strategies have been developed to efficiently compute rank
and select when dealing with binary sequences. They are usually based on building
auxiliary structures that lead to a more efficient management of the sequence. The
strategies proposed in [4] and [5] compute rank and select in constant time. Some
years later, [6] and [7] exploited the compressibility of binary sequences obtaining
constant time rank and select implementations too, with smaller representations
of the sequence. The goal pursued by these developments is the optimization of
the trade-off between the efficiency of the rank and select operations and the space
needed by the representation of the sequence.

New problems and applications require rank and select to be generalized to
sequences of an arbitrary number of symbols instead of bits [8,3]. In this case, given
a sequence of symbols S = s1s2 . . . sn, rank s(S, i) returns the number of times the
symbol s appears in S[1, i], and selects(S, j) returns the position of S containing
the jth occurrence of the symbol s. The most typical example is the computation of
rank and select in sequences of bytes instead of bits, needed, for example, in recent
developments in text indexing.

The strategies used with binary sequences cannot be directly applied to the gen-
eral case or, if applied, they may require a significant amount of memory. Thus,
rather than directly applying those techniques, most of the approaches for the gen-
eral case try to adapt them or to transform the problem in such a way that it
can be reduced to using rank and select in binary sequences. This is the case of
wavelet trees [8]. In this paper we present implementation issues of rank and select
operations in byte sequences, showing that in some cases, using a straightforward
sequential scan implementation and some implementation optimizations can im-
prove the space/time trade-off obtained by other techniques that use additional
structures. We also show that some of them can obtain good performance in rank
but not in select, in which a direct implementation can have a better performance.

The rest of the paper is organized as follows. Section 2 reviews the strategies
developed for the rank and select operations in binary sequences. In Section 3, the
main proposals for the implementation of rank and select in the general case using
additional structures and reducing the problem to the case of binary sequences
are presented. Section 4 describes the different sequential implementation issues we
have explored. Sections 6 and 7 present the experimental results and the conclusions
of the paper respectively.

2 Bit-oriented rank and select

The rank and select operations were defined in [4], one of the first research works
devoted to the development of succinct data structures. In [4], an implementation
of rank and select that was able to compute rank in constant time was proposed.
The author of [4] used that implementation as the basis of a compact and effi-
cient implementation of binary trees. Given a binary sequence B[1, n] of size n,
a two-level directory structure is built. The first level stores rank(i) for every i
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multiple of dlog ne2. The second level stores rank′(j) for every j multiple of dlog ne,
where rank′(j) computes rank within subsequences of size dlog ne2. To compute
rank1(B, i) we can use these two directory levels to obtain the number of times the
bit 1 appears before the subsequence of size dlog ne2 containing the position i. The
same happens in the second level of the directory structure. The final result is ob-
tained using table lookups. The bits of the subsequence of size dlog ne containing the
position i that could not be processed with the information of the directories, are
used as the index for a table which tells us the number of times bit 1 or 0 appears
in them. Therefore rank can be computed in constant time. However, with this
approach select is computed in O(log log n), since it has to be implemented using
binary searches. The space needed by these additional directory structures is o(n).

Later works improved these results obtaining constant time implementations
for rank and select [5,9]. A new directory structure organized in three levels was
proposed in [5]. In this case, the first directory level stores the positions of every
dlog nedlog log ne’th 1 bit. The second level stores the positions of bits set to 1 in
the subranges corresponding to the first level, and the same happens with the third
directory level with respect to the second one. With this more complex structure,
[5] is able to compute the two operations in constant time requiring O(n) additional
space. Take into account that this implementation works for the operation select1,
and we would have to create the analogous for select0 if needed (the representation
of the sequence proposed by [6] is not complete [3]).

The solutions proposed by [4,5,9] are based on the idea of using additional data
structures for efficiently computing rank and select without taking into account the
content of the binary sequence and its statistical properties (number of 1 bits and
their positions in the sequence). [6] and [7] explored a new approach working with
compressed binary sequences which are also able to efficiently compute rank and
select. [6] first explored the possibility of representing the sequence as a set of
compressed blocks of the same size, each of them represented by the number of 1
bits it contains and the number corresponding to that particular subsequence. Since
with this scheme the number of blocks grows almost linearly with the size of the
sequence, [6] also proposed an interval compression scheme that clusters suitable
adjacent blocks together into intervals of varying length.

The compressed representation of binary sequences proposed by [7] is based on
a numbering scheme. The sequence is divided into a set of blocks, each of them
represented by the number of 1 bits it contains and an identifier, in such a way
those blocks with few 1 bits require shorter identifiers. This approximation obtains
zero-order compression and is currently the best complete representation of binary
sequences [3] (that is, it supports access, rank and select in constant time for both
0 and 1 bits). [7] also shows how this binary sequence data structure can be used
for the optimal representation of k-ary trees and multisets.

Another research line aims at compression of binary sequences when the num-
ber of 1 bits is small. The approach known as gap encoding obtains compressed
representations of binary sequences encoding the gaps between consecutive 1 bits in
the sequence. [10,11,3] present several developments and improvements for this ap-
proach, although we have to take into account that it is supposed that the number
of 1 bits in the sequence is small. In other case, the proposals previously described
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usually perform better.

3 Byte-oriented rank and select based on bit-oriented
solutions

Although rank and select operations were initially defined over binary sequences,
new developments and applications require these operations to be defined over se-
quences of symbols from an arbitrary alphabet. In this paper we focus on the
problem of computing rank and select over sequences of bytes, which, for exam-
ple, is a topic of interest in text indexing. In this more general case, the solutions
described in the previous section for binary sequences cannot be valid or directly
applied. This section describes the most important approximations to this problem
based on the use of binary sequences: the use of bitmaps, and the use of Wavelet
Trees.

Constant time rank and select using bitmaps.
The easiest way to efficiently compute rank and select in byte sequences consists in
using indicator bitmaps (binary sequences) for each byte [1]. For each position of
the original byte sequence, only the bitmap corresponding to its byte has a 1 bit in
that position. Therefore, as we can compute rank and select in binary sequences in
constant time, we can also do it in the case of sequences of bytes. The price to pay
for this efficient implementation is the space used by the bitmap for each byte and
the necessary additional data structures for computing rank and select in constant
time in each one of them. We will refer as 256-BM to this approach in the rest of
the paper.

Wavelet trees.
The wavelet tree was proposed in [8,12] and permits to efficiently compute rank and
select in sequences of symbols from an arbitrary alphabet Σ of size n. The wavelet
tree is a balanced binary tree in which each node stores a bitmap. The tree is built
as follows. The root is given a bitmap of the same size as the sequence of symbols.
For each position, the bitmap is set to 0 if the symbol corresponding to that position
belongs to the first half of the alphabet, and 1 in other case. The symbols labeled
with a 0 are processed in the left child of the node, and those labeled with 1 are
processed in the right child. Therefore, the child node has associated with the
first half of the alphabet and the right one with the second half. This process is
repeated until the alphabet cannot be divided again and we reach the leaves of the
tree. Figure 1 shows a simple example with a sequence of symbols from the alphabet
Σ = {a, b, c, d} (text is shown only for clarity, but it is not actually stored).

Generalizing this definition of binary wavelet tree to the case of byte sequences
(Σ = {0, . . . , 255}) results in a balanced binary tree with eight levels. In the level i of
the tree, the bit in the bitmap for each byte is the i bit of its binary representation,
so in this case the tree is even easier to implement.

Lets suppose we want to compute rankc at the position i in the sequence of bytes.
We traverse the tree from the root to the leaf corresponding to c. By applying rank
in the bitmap of each node we obtain the position in which rank is applied for the
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a a c b d d a b c c

0 0 1 0 1 1 0 0 1 1

a a b a b

0 0 1 0 1

c d d c c

0 1 1 0 0

a a a b b c c c d d

Original sequence: “a a c b d d a b c c”

S = {a,b,c,d}

S = {a,b} S = {c,d}

S = {a} S = {b} S = {c} S = {d}

B1

B2 B3

Fig. 1. Example of wavelet tree

next level of the tree. For example, in the wavelet tree shown in figure 1, as a

belongs to the first half of the alphabet, we compute ranka(B, 5) and we move to
the left child of the root. In the next level we compute rank0(B2, 3) = 2, so the
answer to ranka(B, 5) is 2. To answer select, the tree is traversed from the leaf
corresponding to the character to the root following the same idea. For example, if
we want locate the 2nd d, selectd(B, 2), then we start in the leaf corresponding to
d, and then compute select1(B3, 2) = 3 and then select1(B1, 3) = 6, so the answer
is 6.

4 Direct implementation of byte-oriented rank and se-
lect

The solutions described in the previous section for rank and select in byte sequences
try to efficiently compute these operations avoiding a sequential scan of the se-
quence. However, we have identified some implementation issues that can make a
sequential scan of the whole sequence, or only a part of it (if auxiliary structures are
built), to be competitive. In some cases this straightforward or direct implementa-
tion can perform better in time, and in the space needed. In this section we describe
this implementation issues when computing rank and select with a sequential scan.

Straightforward implementation.
When computing rank and select with a sequential scan we have to compare each
byte of the sequence and increment a counter if needed. The first issue we explored is
how to efficiently compute this comparison (pseudocode for rankc(B, i) is provided.
select is implemented in the same way):

• Comparison using if . The first option for the comparison is the use of an if

sentence for the comparison.

Algorithm 1 Using if

FOR j ← 1 to i

IF Bj = c

count ← count + 1
ENDIF

ENDFOR
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• If with skip loop. We can replace the if sentence with a skip loop condition.
Experimental results show that this optimization improves the performance of
the loop, when the number of occurrences of the selected byte c is not very high.

Algorithm 2 Skip loop

FOR j ← 1 to i

WHILE (Bj 6= c) and (j ≤ i)
j ← j + 1

ENDWHILE
count ← count + 1

ENDFOR
IF Bj 6= c

count ← count− 1

• XOR. We can remove the if sentence by adding to the counter the result of an
XOR operation.

Algorithm 3 XOR

FOR j ← 1 to i

count ← count + ¬(Bj ⊕ c)
ENDFOR

• Table lookup. We can avoid the comparison by using a table with 256 entries,
where for each byte j, we add to the counter the value of table[Bj ]. Only the
position corresponding to the byte c has a value 1, the others 0.

Algorithm 4 Table lookup

table[c] ← 1
FOR j ← 1 to i

count ← count + table[Bj ]
ENDFOR
table[c] ← 0

A comparison of those four implementations is given in Table 1. The time (in
µsecs.) needed to count all the occurrences of a given byte value in a byte-array
is shown. We take into account three groups of byte-values depending on their
frequency (Low, Med, and High). As it is explained in Section 6, RT and NLT are
two sequences of bytes with around 249MB. They contain random bytes (RT) and
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count If (without skip-loop) If (skip-loop) xor Table lookup

RT NLT RT NLT RT NLT RT NLT

Low Freq 0.553 0.548 0.318 0.307 0.560 0.560 0.309 0.311

Med Freq 0.560 0.558 0.325 0.307 0.557 0.560 0.310 0.313

High Freq 0.566 0.660 0.325 0.538 0.560 0.562 0.314 0.312

Table 1
Comparison of the presented implementations to count the occurrences of a given byte value.

count byte-parallel simple

If Table lookup xor Table lookup If (skip-loop)

RT NLT RT NLT RT NLT RT NLT RT NLT

Low Freq 0.182 0.171 0.222 0.222 0.235 0.226 0.309 0.311 0.318 0.307

Med Freq 0.189 0.168 0.222 0.222 0.234 0.225 0.310 0.313 0.325 0.307

High Freq 0.206 0.436 0.222 0.222 0.246 0.432 0.314 0.312 0.325 0.538

Table 2
Comparison of the byte-parallel implementations.

ASCII data from natural language text (NLT). IF skip-loop seems to be the best
choice in NLT when low frequency values are searched for, whereas table-lookup
approach behaves better in other cases, outstanding also the most stable times.

Parallel implementation.
The previous strategies consider a sequential scan of the sequence one byte at a
time. When computing rank and select in byte sequences we can read an integer
in each iteration of the loop and process its four bytes. With this approach, the
computational cost introduced by the loop is divided by four. We can do the
comparison of each byte of the integer with the same strategies previously described.
For example, if we want to use the “table” approach, the sentence to update the
counter in the loop would be:

count ← count + table[byte1] + table[byte2] + table[byte3] + table[byte4]

and the same can be applied to the other alternative implementations.

Table 2 presents a comparison of the most efficient byte-parallel implementations
against their simple counterparts. IF-based approach is now the best choice in most
cases.

5 Byte-oriented rank and select using block structures

All the previous techniques described in this section have a linear complexity with
the size of the sequence since they are based in a sequential scan. As we explained
in Section 2, constant time in the case of binary sequences can be obtained using
a two level directory structure (blocks and superblocks). It can be adapted to the
case of sequences of bytes. First, we use only a directory level, described in Section
5.1. In Section 5.2, we optimize the first approach using a two-level structure.
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5.1 Single block structure

Straightforward implementations can be improved by storing at given intervals ab-
solute counters of the number of times each byte appears before that position. With
this approach we do not compute rank and select in constant time, but we have to
perform a sequential scan only in a small portion of the sequence. This permits us
to easily adjust the space/time trade-off by just changing the size of the intervals.

Given a sequence of bytes B[1, n], we use a one-level directory structure, dividing
the sequence into b blocks. Each block stores the number of occurrences of each
byte from the beginning of the sequence to the start of that block.

With this approach, rankbi(B, j) is obtained by counting the number of occur-
rences of bi from the beginning of the last block before j up to the position j, and
adding to that the value stored in the corresponding block for byte bi. Instead
of O(n), this structure answers rank in time O(n/b). To compute selectbi(B, j)
we binary search the stored values in the blocks for the first value x such that
rankbi(B, x) = j, and complete the search with a sequential scanning in that block.
The time is O(log b + n/b).

5.2 Two-level block structure

Given a sequence of bytes B[1, n], we use a two-level directory structure, dividing
the sequence into sb superblocks and each superblock into b blocks of size n/(sb∗b).
The first level stores the number of occurrences of each byte from the beginning of
the sequence to the start of each superblock. The second level stores the number
of occurrences of each byte up to the start of each block from the beginning of the
superblock it belongs to. The second-level values cannot be larger than sb ∗ b, and
hence can be represented with fewer bits.

With this approach, rankbi(B, j) is obtained by counting the number of occur-
rences of bi from the beginning of the last block before j up to the position j, and
adding to that the values stored in the corresponding block and superblock for byte
bi. Instead of O(n), this structure answers rank in time O(n/(sb ∗ b)). To compute
selectbi(B, j) we binary search for the first value x such that rankbi(B, x) = j. We
first binary search the stored values in the superblocks, then those in the blocks in-
side the right superblock, and finally complete the search with a sequential scanning
in the right block. The time is O(log sb + log b + n/(sb ∗ b)).

An interesting property is that this structure is parameterizable. That is, there
is a space/time tradeoff associated to parameters sb and b. The shorter the blocks,
the faster the sequential counting of occurrences of byte bi.

6 Empirical Results

We have tested our developments over two large byte-arrays with both real and
synthetic data. As real data we chose the AP Newswire 1998 corpus (AP) from
TREC-2 1 collection. AP corpus consists of many news in xml form, and contains
250,634,186 bytes which are mainly natural language text (NLT). As expected, those

1 http://trec.nist.gov.
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bytes from AP corpus follow a very biased distribution of frequency, as some of them
appear many times (i.e. the blank) and others (around 100 byte values) do not
appear at all. As synthetic data, we also generated a byte-array of the same size as
AP corpus that consists of random bytes following a uniform distribution. We will
refer to this data as RT in advance.

Our results compare the efficiency of six different approaches to compute byte-
oriented rank and select operations:

(i) base*: which traverses the byte-array sequentially (using the IF-based ap-
proach).

(ii) WT*: which uses a binary wavelet tree without any kind of super-blocks to
rapidly compute binary rank and select operations.

(iii) WT(sb): similar to the previous technique but using super-blocks and blocks
following the idea in [4].

(iv) base(b): the optimization of base technique that is based on keeping 256-
counters for given sampled offsets of the byte-array (blocks).

(v) base(sb): which is an optimization of the previous technique, using a two-level
structure of counters (blocks and superblocks).

(vi) 256-BM: which aims at performing byte-oriented rank and select directly by
handling 256 bitmaps (one indexing each type of byte).

As expected, the more memory available to keep blocks the more efficient base(b)
and base(sb) become. In practice, we used for base(b) and base(sb) as much ad-
ditional memory as WT(sb) needs. However, results showing the effects of the
amount of memory available to hold blocks on the efficiency of base(b) and base(sb)
approaches are given at the end of Section 6.

For each technique, we present the time needed to answer count, rank, select and
access operations on the NLT and RT byte-arrays, for three different groups of bytes:
Low frequency bytes (LFq), Medium frecuency bytes (MFq) and High frequency bytes
(HFq). Count operation was performed over the whole sample byte-arrays for LFq,
MFq, and HFq groups, whereas rank operation was applied for each group over three
fixed offsets of the byte-arrays. Those offsets correspond to the bytes in positions
1
4x, 1

2x, and 3
4x, where x is the size of the whole byte-array. In the case of select

operations we focused in the cost of performing both selectc(1), and selectc(3
4y),

where y is the number of occurrences of byte c. We also compute access average
times for random positions of the byte-array.

An isolated IntelrPentiumr-IV 3.00 GHz system (16Kb L1 + 1024Kb L2 cache),
with 4 GB dual-channel DDR-400Mhz RAM was used in our tests. It ran De-
bian GNU/Linux (kernel version 2.4.27). The compiler used was gcc version 3.3.5
and -O9 compiler optimizations were set. Time results measure cpu user time in
microseconds.

Experimental results for count operation
Table 3 presents count results. As expected, the first two techniques obtain very
poor results. Specially in the case of LFq byte-values, using a wavelet tree as in
WT* is still a better idea than performing a sequential count through the whole
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count base* WT* WT (sb) 256-BM base (b) base (sb)

RT NLT RT NLT RT NLT RT NLT RT NLT RT NLT

LFq 186472 172674 17319 0.020 0.120 0.120 0.015 0.015 0.904 0.873 0.429 0.409

MFq 192871 175773 17231 45.743 0.120 0.120 0.015 0.015 1.028 0.875 0.488 0.409

HFq 193671 301054 16831 138749.907 0.120 0.110 0.015 0.015 1.118 2.012 0.527 0.948

Table 3
Time for count operation (in µsecs).

rank % base* WT* WT (sb) 256-BM base (b) base (sb)

RT NLT RT NLT RT NLT RT NLT RT NLT RT NLT

25 46093 42694 12558490 6790967 0.120 0.120 0.015 0.015 0.713 0.685 0.147 0.283

LFq 50 91586 85287 25896063 13527943 0.120 0.120 0.015 0.015 1.355 1.328 0.234 0.516

75 138779 128381 39129052 20841831 0.120 0.120 0.015 0.015 0.263 0.247 0.379 0.198

25 47993 44393 12585087 6953943 0.120 0.130 0.015 0.015 0.795 0.687 0.164 0.266

MFq 50 96385 85387 25143178 14173846 0.120 0.120 0.015 0.015 1.491 1.323 0.258 0.508

75 143978 128481 37792255 21900671 0.130 0.120 0.015 0.015 0.264 0.251 0.464 0.207

25 47993 208368 12554092 7552851 0.120 0.130 0.015 0.015 0.728 2.560 0.146 1.058

HFq 50 95685 419436 24964205 15257680 0.120 0.120 0.015 0.015 1.509 5.716 0.261 2.219

75 143778 629504 37499300 22826529 0.120 0.120 0.015 0.015 0.250 0.328 0.713 0.608

Table 4
Time for rank operation (in µsecs).

byte-array as in base*. It is also noticeable that even though in our RT byte-array
measured times seem to change only slightly depending on their frequency, in NLT
the least frequent byte-values occur so rarely (only once), that they can be found
very rapidly in WT*. Among the four more optimized techniques, 256-BM takes
advantage of using a large amount of memory and becomes around 8 times faster
than WT(sb). Anyway, WT(sb) is still very fast as it only has to perform a binary
rank on the leaf containing the searched byte-value. Finally, base(b) and base(sb)
are also able to count the occurrences of any byte-value in less than 2 µsecs and
1 µsecs respectively, but they are slower than WT(sb) technique. Notice also that
base(b) and base(sb) worsen as the frequency of the searched byte-value increases,
whereas 256-BM and WT(sb) remain constant in practice.

Experimental results for rank operation
Results regarding rank operation are given in Table 4. The base* approach becomes
faster than WT*. Better results are obtained when low frequency byte values are
searched for and when rank is applied to a smaller offset of the byte-array (less
bytes have to be traversed). 256-BM and WT(sb) obtain exactly the same constant
times shown for count scenario. In the case of base(b) and base(sb), results are still
worse than those of the two previous techniques. Assuming that rankc(i) is being
computed, these results depend basically on the number of bytes that have to be
traversed from the previous block before i; that is, they depend on the gap from the
previous block (i mod samplePeriod). More precisely the samplePeriod is the size
of each block. For example for base(b), the samplePeriod was 2788, those gaps are
1036, 2072, and 320 bytes respectively for the percentages 25, 50, and 75 shown in
Table 4 for base(b).
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selectc(1) base* WT* WT (sb) 256-BM base (b) base (sb)

RT NLT RT NLT RT NLT RT NLT RT NLT RT NLT

LFq 0.489 114453.400 294.095 9449563.002 2.208 2.151 0.069 0.098 0.531 1.348 0.528 0.533

MFq 0.443 354.111 47.283 38344.170 2.192 2.190 0.077 0.075 0.475 1.836 0.467 0.613

HFq 0.303 1.780 34.725 12.778 2.243 2.111 0.078 0.079 0.329 0.212 0.325 0.224

Table 5
Time for selectc(1) operation (in µsecs).

selectc(y) base* WT* WT (sb) 256-BM base (b) base (sb)

75% RT NLT RT NLT RT NLT RT NLT RT NLT RT NLT

LFq 2541779 1064092 42633518 9518553 2.301 2.148 0.101 0.084 1.876 1.348 1.087 0.534

MFq 2115839 1200780 38960077 23557419 2.219 2.236 0.079 0.068 1.618 1.370 0.548 0.613

HFq 2697361 1392936 38980075 24170326 2.275 2.185 0.082 0.059 1.324 1.928 0.785 0.649

Table 6
Time for selectc(y) operation (in µsecs).

Experimental results for select operation
Things change when selectx(1) is computed; that is, when we aim at obtaining the
offset where the first occurrence of x appears. Results are shown in Table 5. Except
for MFq byte-values in NLT, both the simple base* and base(b) or base(sb) become
faster than WT* and WT(sb) respectively. This occurs because in base approach
selectc(1) needs only a fast binary search, that is much faster than performing a
down-top traversal of the wavelet-tree (and computing 8 binary selects). The main
advantage of WT(sb) is that it obtains almost constant times that are indepen-
dent of the frequency of c value, and also independent of the offset where the first
occurrence of c appears.

Focusing on selectc(y) operation, WT(sb) put up again a good show (see Ta-
ble 6), obtaining practically the same results as in selectc(1). However, the base(sb)
improves also its performance in all cases. It is also noticeable that base* becomes
a much faster choice than WT* when selectc(y) is to be performed. In this scenario
WT* works too inefficiently to be chosen as a useful alternative. As expected, the
256-BM technique is again the faster choice to obtain selectc(1) and selectc(y).

Experimental results for access operation
We have only evaluated access operation using WT(sb) and base(sb) techniques.
WT(sb) returns the byte at a given position in 194.2 ns, whereas base(sb) averages
4.2 ns to compute the same operation. WT(sb) is clearly slower than base(sb)
because it performs a down-top traversal of the wavelet-tree (computing binary
selects). base(sb) stores the original sequence as an array, so access operation can
be trivially implementated.

A brief recap of the experimental evaluation
Results seem to show up base(b) and specially base(sb) as two interesting alternatives
to the use of binary wavelet-trees WT(sb) when rank, select and access operations
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% mem used by WT(sb) 1% 10% 20% 50% 100%

Mem. usage (KB) 901 9171 18350 45973 90943

Number of blocks 900 9170 18349 45972 89898

bytes covered by block 278484 27332 13660 5452 2788

count all 198.723 19.906 0.423 0.248 0.956

rank 98.475 9.441 3.909 1.567 0.812

selectc(1) MFq, 0.193 0.192 0.203 0.192 1.836

selectc(y) MFq 106.455 17.276 7.401 0.224 1.370

gap count (bytes) 277072 27080 508 296 1352

gap rank (bytes) 139242 13666 6830 2726 1394

Table 7
Trade-off efficiency vs memory usage for base(b) technique in RT byte-array.

need to be computed over sequences of bytes. Even though base(sb) obtains worse
results than WT(sb) for rank operation it is faster than WT(sb) for computing select
and access. Even though 256-BM obtained the best results, it is important to take
into account that, in very large byte-sequences, the amount of memory needed to
keep those 256 bitmaps could be so huge that 256-BM might have been penalized
because of swapping. In such case the results obtained by the 256-BM approach
would still obtain good cpu user-time, but elapsed-time would worsen a lot.

6.1 Memory usage and efficiency using block structures

Analysis for base(b) technique
Since each block contains 256 counters (4 bytes each), so each block wastes 1024
bytes. It is possible to easily modify the number of blocks used for base(b) technique.
As expected, the more blocks are used the more efficient base(b) becomes.

In Table 7 we set different numbers of blocks such that base(b) uses around 1%,
10%, 20%, 50%, and 100% the amount of memory allocated for the blocks and
super-blocks needed by the WT(sb) technique. The exact amount of memory used
is shown in the second row. The third row in that table gives the number of blocks
used, and the fourth the number of bytes that are covered by each of such blocks.
Rows from the fifth to the eighth show respectively the time (in µsecs.) needed
to compute count, rank, selectc(1) and selectc(y) in RT sequence of bytes. Results
for count and rank depend respectively, on the distance from the last block to end
of the byte-array, and on the distance between the previous block and the ranked
offset. Those gaps are shown in the last two rows of Table 7. Results for selectc(1)
are almost constant if medium frequency byte values are searched for. However,
results for selectc(y) show that trading space for efficiency is possible and leads us
to an interesting speed-up as more memory is available.

Analysis for base(sb) technique
Analogously, we can choose values for sb (number of superblocks) and for b (number
of blocks in a superblock) in base(sb) technique, in order to increase the speed of
rank and select operations, or to reduce the amount of memory allocated.

Figure 2 shows different memory requirements for select operations using
base(sb) technique. As the amount of memory grows, it becomes faster. Differ-
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ent values for b are chosen. Notice that it some values are not possible, because the
block counters, represented with few bits, can be overflowed.

Fig. 2. Trade-off efficiency vs memory usage for base(sb) technique in select operations over NLT byte-array

7 Conclusions and Future Work

In this paper, we have targeted at different possible choices to tackle the problem
of obtaining byte-oriented rank and select operations over sequences of bytes. We
presented our experiences on developing and implementing six different alternative
approaches. Firstly, we showed the simplest choice, which consists on sequentially
processing the sequence of bytes from the beginning and counting the number of
occurrences of a byte-value until a given offset (rank) or until a given number of oc-
currences is reached (select). Several alternatives to count those occurrences where
presented in Section 4. Although IF-alternative seemed to be the most efficient
approach, obtains results that do not depend on the number of occurrences of the
byte-value searched for. It was shown that just by representing a byte-array as an
integer-array (or more generally, a machine-word-array), permits us to use faster
byte-parallel rank and select operations. More precisely, processing times can be
reduced to the half.

Traditional approaches such as WT(sb) and 256-BM were discussed and imple-
mented. 256-BM obtained the best performance for rank and select operations, but
it requires a huge amount of memory. WT(sb) showed up also as a fast alternative to
perform rank and select. However, our simple base(sb) alternative overcome the re-
sults obtained by WT(sb) (using the same amount of memory) for computing select
and access operations. Given those results we also showed the interesting trade-
off between space and efficiency that can be obtained depending on the number of
blocks and superblocks used to index a byte-sequence.

We applied the two-level directory structure presented in this paper in the im-
plementation of the self-index presented in [15]. This self-index is based on the con-
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struction of a byte-oriented wavelet-tree that is applied to index text compressed
with either any semistatic byte-oriented word-based compressor [13][14]. Being
byte-oriented, this new self-index requires the use of byte-oriented rank and select
operations. The use of the directory structures for computing rank and select have
an important impact on the index efficiency.
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