
Scalable and Queryable Compressed Storage Structure for
Raster DataI

Susana Ladra, José R. Paramá, Fernando Silva-Coira1

Universidade da Coruña, Facultade de Informática, Campus de Elviña s/n, 15071 A Coruña, Spain

Abstract

Compact data structures are storage structures that combine a compressed represen-
tation of the data and the access mechanisms for retrieving individual data without the
need of decompressing from the beginning. The target is to be able to keep the data
always compressed, even in main memory, given that the data can be processed directly
in that form. With this approach, we obtain several benefits: we can load larger datasets
in main memory, we can make a better usage of the memory hierarchy, and we can ob-
tain bandwidth savings in a distributed computational scenario, without wasting time in
compressing and decompressing data during data exchanges.

In this work, we follow a compact data structure approach to design a storage struc-
ture for raster data, which is commonly used to represent attributes of the space (tem-
peratures, pressure, elevation measures, etc.) in geographical information systems. As it
is common in compact data structures, our new technique is not only able to store and
directly access compressed data, but also indexes its content, thereby accelerating the
execution of queries.

Previous compact data structures designed to store raster data work well when the
raster dataset has few different values. Nevertheless, when the number of different values
in the raster increases, their space consumption and search performance degrade. Our
experiments show that our storage structure improves previous approaches in all aspects,
especially when the number of different values is large, which is critical when applying
over real datasets. Compared with classical methods for storing rasters, namely netCDF,
our method competes in space and excels in access and query times.

Keywords: Geographic information systems, raster datasets, data compression,
indexing, query processing.

1. Introduction

Geographical information systems can use different data models to manage spatial
information [2]. At the conceptual level, there are two possibilities: object-based models

IA preliminary partial version of this paper was published in [1].
Email addresses: susana.ladra@udc.es (Susana Ladra), jose.parama@udc.es (José R. Paramá),

fernando.silva@udc.es (Fernando Silva-Coira)
1Corresponding author. Tel. +34981167000 Fax. +34981167160.

Preprint submitted to Elsevier July 21, 2017

and field-based models [3]. Object-based models consider a space containing discrete and
identifiable entities, each with a geospatial position. In contrast, field-based models can
be seen as a continuous mathematical function that for each position of the space returns
a value. Typically, object-based models represent spaces containing buildings, roads, and
other man-made objects. On the other hand, field-based models usually deal with images
and physical properties such as land elevation, temperature, atmospheric pressure, etc.
At the logical level, there are also two models: vector models, which represent the spatial
information using points and line segments, and raster models, which consider the space
as a regular tessellation of disjoint cells, usually squares, each having a value [4]. Any
logical spatial model can be used to represent any conceptual spatial model, however, it
is common to use vector models to represent object-based models and raster models for
field-based models.

This paper deals with spatial information represented with a raster model. This
involves images -including remotely sensed imagery-, engineering, modeling, representa-
tions of parameters of the land surface such as pollution levels, atmospheric pressure,
rain precipitations, land elevation, vegetation indices, etc. Thanks to the advances in
remote sensing and instrumentation, the amount and size of the rasters are increasing
rapidly. For example, it has been estimated that each day, remotely sensed imagery is
acquired at the rate of several terabytes per day [5], and the archived amount of raster
data of this type is slowly approaching the zettabyte scale [6].

In this field, as usual, compression has been used to save space and bandwidth [7, 8,
9]. Long-established compression methods do not allow to process or query compressed
data, requiring a previous decompression phase. However, a recent family of storage
structures, called compact data structures, is changing the way in which compression has
been traditionally used. Compact data structures combine in a unique storage structure
a compressed representation of a dataset and the mechanisms that allow accessing any
given datum without the need of decompressing the data from the beginning [10, 11].
The objective is to keep the data always compressed, even in main memory. In this
way, in addition to the classical savings in disk space and bandwidth, we obtain several
additional benefits: we can process larger datasets within the same memory, we can make
a better usage of the memory hierarchy (including reducing costly disk accesses), and we
can improve the performance when using parallel processing. Data interchanges between
nodes in that scenario are a big issue since they can produce bottlenecks in the network.
Compression has been used to reduce bandwidth consumption [12, 13]. However, data
have to be compressed prior any data exchange and decompressed at the destination node,
given that data cannot be processed in compressed form. Nevertheless, using compact
data structures, we do not need those compression/decompression processes during data
exchanges thanks to the ability to process compressed data.

Another advantage is that, in many cases, compact data structures provide some sort
of indexation, which allows answering queries even faster than performing that query over
the plain representation and within the same compressed space [14, 15, 11]. That is, this
indexation is not provided by an auxiliary structure, and the index plus the data, kept in
the same storage structure, occupy less space than the original data. This characteristic
is usually called self-indexation.

There exists vast research focused on compressing raster datasets, proposing both
lossless [16, 17, 13, 9] and lossy [7] approaches. In addition, there have been efforts in
creating indexes on raster data to improve query and processing performance [18, 19, 20].

2

However, there is much less work on data structures capable of compressing and indexing
data at the same time. The first exponent is the quadtree [21, 22], originally designed as
a method to compress images, which allows the manipulation of the compressed image
directly in main memory and, in addition, it spatially indexes the values of the raster.
However, it does not provide indexation over the values of each cell of the raster. To
the best of the authors’ knowledge, only two recent compact data structures [23] were
designed to represent raster datasets and achieved these three features: a compressed
representation, a spatial indexation, and an indexation of the values of the cells. These
techniques work well when the number of different values in the raster is low; however,
if that number grows, both the space consumption and the query performance degrade
dramatically. Our new storage structure scales much better when increasing the size
of the input data or when the raster matrix increases its cardinality, that is, when the
number of different values grows. Observe that this is an important problem when deal-
ing with rasters, since they are usually obtained from a real continuous phenomenon as
temperature, atmospheric pressure, etc.

This work presents a new storage structure designed following a compact data struc-
ture approach to represent raster datasets, called k2-raster, and an improved version
that we call heuristic k2-raster (k2

H -raster). They are based on the k2-tree [24], a stor-
age structure for representing binary matrices in little space, which can be regarded as
a compact version of a quadtree. The basic ideas of k2-raster were already presented
in a preliminary work [1]. Here, we described it more in detail, including pseudocodes
and examples for more queries. The k2

H -raster, which was not proposed in the origi-
nal paper, is a variant that significantly improves the spatio-temporal results. We use
an entropy-based heuristical approach to compress the last level of the representation,
which makes our solution the most space-efficient and scalable compressed and queryable
representation up to date.

In this paper, we also enhance the experiments, including more queries. We ran the
experiments over new raster matrices extracted from real datasets of different nature
(temperatures and elevations). The basic k2-raster overcomes in most parameters to
previous approaches, and only when the number of different values is low, it can be on
a par in some parameters, whereas the heuristic variant overcomes them in all aspects,
even in the scenario of low number of different values.

We also include a comparison with netCDF [25], a classical method to store rasters.
NetCDF includes the possibility of compressing the data with Deflate [26], and by using a
simple API, transparently accessing the compressed data. k2-raster obtains compression
ratios close to those achieved by netCDF, but differences are not significant. However,
k2-raster clearly outperforms netCDF in access and query times, even in some cases when
using the uncompressed version of netCDF files. Thanks to the indexing capabilities of
k2-raster, queries specifying conditions on the values of the raster are solved orders of
magnitude faster than over uncompressed netCDF files.

The rest of the paper is structured as follows. Section 2 presents some related work.
Section 3 describes the k2-raster in detail, whereas Section 4 presents the k2

H -raster.
Section 5 presents our experimental study. Finally, Section 6 shows the conclusions and
future work.

3

0 1

2 5

4

3

7

20

3 18 4 7

0 1 2 5

Figure 1: An image (left), where a number inside a square means that all pixels in that square have that
value, and the corresponding conceptual quadtree showing the byte representation of each node using
the Treecodes strategy.

2. Related work

2.1. Quadtress for raster representation or indexation

As we will see, the k2-raster uses some ideas of the k2-tree [24], which is a region
quadtree for binary matrices built with the latest developments in the field of compact
data structures. In particular, the k2-raster uses the partition strategy of the region
quadtree data structure. Thus, we present here some notions of quadtrees.

There are many different variants of the quadtree and with different purposes [18, 27],
but the compression of images using region quadtrees was one of its original targets
[21, 22]. In this scenario, the quadtree was designed as a representation of images not
only for storage or transmission purposes but to process them directly in main memory
[18]. To fit the structure in main memory, the size is a relevant issue, and thus since it is
a tree, pointer-less representations were introduced [28, 29]. These pointerless represen-
tations use a locational code that for each leaf of the tree gives its position in the space
[28] or an implicit ordering [29]. For our work, it is of special interest the latter case,
denoted as Treecodes. The region quadtree is represented by a sequence of numbers, each
representing a node of the conceptual region quadtree. Each of these numbers has 5 bits,
the most significant bit indicates whether the corresponding node is a leaf or not, and
the remaining 4 bits store a value. In the case of a leaf node, that number is the value
corresponding to a pixel of the image; in non-leaf nodes, it is the average value of the
pixels contained in the region represented by such a node. This average value is used to
give a preview of the image during a slow transmission through a network. The quadtree
is stored as a sequence of bytes, each storing a 5-bit number, where the correspondence of
each byte with the nodes of the conceptual tree is given by the ordering of the sequence,
which is a breadth-first traversal of the tree. The representation of the image of Figure 1
is the sequence of bytes: 20, 3, 18, 4, 7, 0, 1, 2, 5. The first 20 corresponds to the root
node, which is an inner node signaled with a 1 in the fifth bit, the next 4 bits store the
average value of all pixels in the image (4), and thus we have a 10100 (20). The third
byte (18) corresponds to the quadrant further divided into subquadrants, therefore it
represents an internal node (fifth bit set to one) and the next four bits store the average
value (2).

Our work also uses an implicit ordering using a breadth-first traversal, but we separate
the topology of the tree (the most significant bit in the 5-bit number) from the content
(the remaining 4 bits). Thanks to this split, we can use more appropriate methods to

4

represent these two types of information. The topology (the bit indicating whether a
node is a leaf or not) is represented with a k2-tree, which uses 1 bit per node and it is
a very efficient structure to navigate. With respect to the content, the first difference
is that, in non-leaf nodes, instead of storing the average value of the corresponding
subquadrant (only useful for pre-visualization purposes), we store the min-max values to
index the values at the cells of the raster.2 The second difference is that the cell values
(corresponding to leaves) and the min-max values of inner levels are stored using DACs
(see Section 2.2.2) and differential encoding, which can achieve good compression and
allow fast access times.

As explained, the quadtree has been used with different purposes, although the use
of the quadtree to compress rasters (including images) [36, 37, 38, 39, 13] is one of the
main research lines. Another use of the quadtree is to index rasters, although much less
effort was devoted to this feature [20, 40]. The best known example is storing the leaves
of a linear quadtree [41] in a B+-tree [42, 43].

The region quadtree indexes the space allowing spatial searches, however in [20],
the inner nodes of a quadtree, called Binned Min-Max Quadtree, are enriched with the
min-max values of the region represented by such a node, thus indexing the values of
the raster dataset as well. However, there are several differences with respect our work.
First, the values stored at the leaf nodes and the corresponding min-max values at inner
nodes are not the actual values in the raster. They use a binned or histogram strategy,
which consists in assigning a code to ranges of possible values, for example, 0 encodes the
values between -50 and -10, 1 the values between -9 and 0, and so on. Then to perform
searches, first we have to encode our search value, and then use that encoded value to
take decisions at the nodes of the quadtree. This implies that the quadtree is simply a
classical index and thus we have to store the original raster separated from the quadtree,
using a classical representation, that is, the quadtree is an auxiliary structure of the main
data file. In addition, the quadtree with binned codes limits the pruning capacity of the
tree to the boundaries of the ranges defined by the binned strategy. Finally, this previous
work is mainly focused on search capacity, and thus there are no worries about space,
using a naive pointer-based implementation. Later, the same team presented a new data
structure, called Cache Conscious Quadtree [44], which is a quadtree where all nodes are
placed in a one-dimensional array to avoid non-continuous memory allocations, in order
to improve constructions times. Each node has a field indicating the position of its first
child in the array and the min-max values. It uses again a binned strategy, and thus, it
is just an auxiliary index.

As a summary, we can point out that the main difference of our approach with
respect to these works is that while these works are either focused on representing the
raster using compression or on designing an auxiliary index of the raster data, our work
joins these two worlds. We present a storage structure for representing the raster data
in a compressed form, and at the same time, it indexes both the space and the values
of cells. This is a common feature in compact data structures, where there are many
structures, usually called self-indexes, having this capacity for different data types such

2The idea of storing the minimum and maximum values in the internal nodes is known as lightweight
indexing, as it is inexpensive to offer [30, 31, 32]. It is used in sparse indexes of well-known databases
systems, such as in IBM’s ZoneMaps [33], PostgreSQL’s Block Range Indexes (BRIN) [34] or Oracle’s
Storage Indexes [35], as they offer good indexing for different queries with a small footprint.

5

as text [14] or graphs [15].

2.2. Basic compact data structures

In this section, we present several compact data structures that are used as building
blocks of other compact data structures, including the k2-raster.

2.2.1. Rank and select operations over bitmaps

Bitmaps, together with rank and select operations, are a basic component of most
compact data structures [11]. For example, like quadtrees, k2-raster is also conceptually
a tree. In order to compactly represent the topology of that tree, k2-raster uses only a
bitmap, which can be efficiently navigated by using rank operations.

Let B[1, n] be a bitmap, that is, a sequence of bits. rankb(B, i) returns the number
of occurrences of bit b ∈ {0, 1} in B[1, i]. When omitting b, rank operation returns the
number of 1s up to a given position, that is, rank(B, i) = rank1(B, i). selectb(B, i)
locates the position of the ith occurrence of b in B.

These operations can be answered in constant time using just o(n) extra bits on top
of B [45].

2.2.2. DACs

As we will see next, k2-raster will have to store some integer values, thus, we will
use a space- and time-efficient encoding for integer sequenes.

In general, compression of sequences (or arrays) of numbers is one of the most old
problems in the compression field [46, 47, 48, 49, 50]. In particular, one could also see
the problem of representing raster datasets as representing an array of numbers. The
basic idea of most techniques is to use fewer bits to represent the most frequent numbers,
which are often the smallest ones, and more bits for the least frequent. This approach
requires a variable-length encoding, which poses the following problem: in order to use
the sequence of numbers directly in compressed form, we must be able to access to the
ith number without decompressing the sequence. Therefore, a family of compression
methods arises having this property [51, 52, 53, 54, 55, 56, 57].

A member of this family of techniques are the Directly Addressable Codes (DACs)
[58], which are of special of interest for this work, since this is the method used to
compress the values of the cells of the raster. DACs obtain a very compact representation
if the sequence of integers has a skewed frequency distribution, where the number of
occurrences of smaller integer values is higher than the number of occurrences of larger
integer values.

Given a sequence of integers X = x1x2 · · ·xn, DACs take the binary representation of
that sequence and rearrange it into a level-shaped structure as follows: the first level A1

contains the first n1 bits (least significant) of the binary representation of each integer.
A bitmap B1 is added to indicate, for each integer, whether its binary representation
requires more than n1 bits or not. More precisely, for each integer, there is a bit set to
0 if the binary representation of that integer does not need more than n1 bits and a 1
otherwise. In the latter case, the second level A2 stores the next n2 bits of the integers
having a 1 in B1, and a bitmap B2 marks the integers needing more than n1 + n2 bits,
and so on. This scheme is repeated as many levels as needed. The number of levels L
and the number of bits nl at each level l, with 1 ≤ l ≤ L, is calculated in order to achieve
the maximum compression.

6

DACs can efficiently retrieve the integer encoded at any given position by obtaining
the nl bits at each level that form the binary representation of the number. That is, to
recover the number, a top-down traversal is needed, and thus, the worst case time for
extracting a random codeword is O(L), being L the number of levels used. The position
of the corresponding bits at each level is obtained performing rank operations over the
bitmaps Bl.

If we adjust the number of levels and the size of the number of bits in each level (nl)
to obtain the maximum possible compression, this may lead to slow access times, if it
requires a considerable large number of levels. DACs can be configured to obtain the
minimum possible space but limiting the number of levels L. We use this feature in our
proposal.

2.2.3. k2-tree

The topology of the underlying tree of a k2-raster is represented with a bitmap.
There are several compact representations of trees using bitmaps [45, 59, 60] that allow
efficient navigation. k2-raster uses a simplified and compact representation based on
LOUDS (level-ordered unary degree sequence) tree representation [45], together with a
region quadtree decomposition [27, Section 2.1.2.4]. This strategy is the basis of the k2-
tree data structure [24], which is a storage structure for binary matrices. It was originally
designed to compress Web graphs and, as all compact data structures, allows accessing
and querying the data without decompressing it.

From a binary matrix of size n × n, and being k an input parameter, the k2-tree is
built as a non-balanced k2-ary tree, where each node corresponds to a submatrix result-
ing from a recursive division of the matrix into k2 submatrices of the same size. The
first partition divides the original matrix into k rows and k columns of submatrices of
size n2/k2. Each of those submatrices generates a child node of the root having only one
bit, whose value is 1 iff there is at least one 1 in the cells of that submatrix. A 0 child
means that the submatrix has all 0s and then, the tree decomposition ends there. The
submatrices having at least one 1 are recursively divided into k2 submatrices, producing
each one a child node of the corresponding parent. This process continues until reaching
a submatrix full of 0s or until reaching the cells of the original matrix (i.e., submatrices
of size 1 × 1). Figure 2 shows an example of this subdivision (left) and the resulting
k2-ary tree (right) for k = 2.

Instead of using a pointer-based representation, the tree is compactly represented
by just using two bitmaps T and L, whose values are the bit values resulting from a
breadth-first traversal of the tree. T stores all the bits of the k2-tree except those at
the last level of the tree, whereas L stores the last level of the tree, thus containing the
binary value of (some) original cells of the adjacency matrix. It is possible to navigate
this space-efficient representation by just accessing bitmaps T and L. In particular, it
is possible to retrieve any cell, row, column or region of the matrix in a very efficient
time. This navigation is obtained by means of top-down traversals in the conceptual
tree, which are simulated with rank operations over T .

The k2-tree has an excellent performance in both space and time when the binary
matrix is sparse, with large zones of 0s and where the 1s are clustered. There also exists
a variation of the k2-tree that compresses areas full of 1s [23]. In this variation the
subdivision ends when the algorithm finds a submatrix full of 0s (white zones) or full of

7

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000010 000

00011100 000

00000000 000

00000000 000

00000000 000

00000000 000

00000000 000

01000000 000

01000000 010

01000000 101

01000000 010

00000000

00000000

00000000

00000000

01 1 1

1 1 10 0 0 0 0 0 01 1

1 1 1111 1 1 10 0 0 00 0 0 0 0 0 0

0100 01000011 0010 0010 10101000 0110 0010

Figure 2: Example of binary matrix(left) and resulting k2-tree representation (right), with k = 2.

1s (black zones), adding a method to distinguish black and white areas. Therefore the
subdivision only continues when the submatrix has a mixture of 0s and 1s (gray zones).
This representation is more suitable for representing other types of datasets different
from Web graphs, such as binary images.

Apart from its original application, the k2-tree has been used and adapted for many
different purposes, among others, to support the compact representation of RDF datasets
[61], moving objects [62, 63], general graphs [64], and raster data [23]. The approaches
used to represent raster data using the k2-tree as basis will be explained in the next
section.

2.3. Compact data structures for representing rasters

In this section, we present the k3-tree and the k2-acc, the two previous compact
data structures for representing and indexing raster datasets [23]. It has been shown
that these approaches are superior in both space and search performance to other ways
of representing rasters, such those based on compressing GeoTIFF images. Our work,
which was preliminary presented in [1], follows these approaches, obtaining better results
both in space and query times.

2.3.1. k3-tree

The first approach is obtained by simply adding another dimension to the k2-tree.
The k3-tree stores a binary cube using the same partitioning and representation strategies
used in the k2-tree.

The k3-tree stores points 〈x, y, z〉, where the first two values represent the position in
the 2-D space, and the third component is the value stored in that cell. It is possible to
efficiently navigate the k3-tree, basically using the same procedures used in the k2-tree,
but extended to three dimensions. If we want to obtain the value stored at a given
position, we just fix that position in the 2-D space (x and y) and then we check the
corresponding z value. To obtain the cells with a given value or a range of values, we fix
the value(s) of z, and we search the values of (x, y) having the given value(s).

8

2.3.2. k2-acc

Another way to represent a raster having values in the range v1 < v2 < · · · < vt
is to use a k2-tree for each value. Then, the representation is formed by t k2-trees
K1,K2, . . . ,Kt, where each Ki has a value 1 in those cells whose value is v ≤ vi in the
original raster. Observe that the k2-trees corresponding to the bigger values (those close
to vt) will have large areas full of 1s, therefore the variant of the k2-tree that compresses
also the areas full of 1s is used. This approach is called accumulated k2-trees or k2-acc.

To obtain the value at a given cell, a binary search over the collection K1,K2, . . . ,Kt

is needed. This approach is very efficient returning the cells having a value in a given
range [vb, ve], since it only needs to check Kb and Ke. To obtain the cells having a given
value is also solved accessing two k2-trees.

Comparing k2-acc and k3-tree, the first one is better in retrieving cells containing a
given value or range of values, whereas the k3-tree obtains better space consumption and
time results when retrieving the value at a given position.

3. Our proposal: k2-raster

In this section, we present the k2-raster, a new storage structure that represents
rasters in compressed space, and at the same time, indexes the space and the values
stored at cells.

Let M be a raster matrix of size n × n, being n a power of k, where each cell Mij

stores a value v ≥ 0.3 The k2-raster uses the same partitioning strategy used by the
original k2-tree, that is, it recursively divides M into k2 submatrices, and builds a tree
representing this recursive subdivision. In k2-raster, the recursive division stops when
all the cells in a submatrix have the same value. The nodes of the tree store the minimum
and the maximum values of the corresponding submatrix in order to index the values at
cells. Therefore, the k2-raster puts together the quadtree spatial index, the min/max
indexing of rasters, and a compressed representation of the data. As explained, the k2-
raster joins in a unique storage structure two desirable properties: indexing capabilities
and an efficient representation of the values in the cells and the values at the nodes.

3.1. Construction and data structures

The first step of the construction process is the creation of the root node that stores
the minimum and maximum values (rMin, rMax) of the complete matrix. If rMin and
rMax are equal, only one value is stored as the maximum, and the process ends here.
Otherwise, the two values are stored and the matrix is divided into k2 submatrices, each
adding a child node to the parent, in this case, to the root node. For each generated
submatrix, the process is recursively repeated, until the maximum and minimum values
become equal, or until the decomposition reaches the last level, that is, when the decom-
position of a submatrix obtains submatrices of just one cell. Observe that, being n′ × n′

the size of the matrix, the tree has a height of at most h = dlogk n
′e levels.

3In case that the input matrix is of size n×m, being n and m any integer, we conceptually extend the
input matrix to the right and to the bottom, making it of size n′ × n′ such that n′ = kdlogk max{n,m}e,
that is, we round n and m up to the next power of k of their maximum value. This does not cause a
significant overhead because our technique effectively compresses large areas of equal values.

9

Figure 3: Example of raster matrix (top). We indicate the minimum (light gray) and maximum (dark
gray) value of each submatrix for the four steps of the recursive subdivision of the construction algorithm,
using k = 2. Conceptual tree representation obtained from the construction of the k2-raster (bottom).
Numbers at each node indicate the maximum and minimum value of its corresponding submatrix. In
the last level, only one value is shown, since the submatrices are formed by only one cell.

Figure 3 shows an example that illustrates the process. Under the label “Step 1”, we
can see an 8 × 8 raster matrix, and below it, the corresponding k2-raster using k = 2.
The root node stores the maximum and minimum values of the matrix, since these values
are different, the 8× 8 raster matrix is divided into 4 submatrices of 4× 4 cells. Under
the label “Step 2”, we can see those submatrices and their maximum (marked in dark
gray) and the minimum (marked in light gray) values. For each subdivision, one child
node is added to the root node of the tree, storing those values. Observe that in the
case of the bottom right submatrix, the maximum and the minimum values are the
same (2), therefore such node becomes a leaf node and its corresponding matrix is not
further subdivided. The other three submatrices are then subdivided, shown under label
“Step 3”, each displaying its maximum and minimum values. Level 2 contains the nodes
corresponding to those submatrices, and again, those containing only one value produce
a leaf node, and the rest are further subdivided. Finally, at level 3, the process reaches
the cell level, and thus, for each subdivision, its node has one child for each of its cells,
storing the value of that cell.

The previous description is a high level description of the k2-raster, the actual rep-
resentation uses several succinct data structures strategies to obtain compression. More
specifically, we represent the topology of the tree and the maximum and minimum values,
which make up the k2-raster, as follows:

• The topology of the tree is stored separately from the rest of the information. For
this purpose, k2-raster uses a data structure similar to that of a k2-tree. In contrast
to the original k2-tree, a 0 in a node of a k2-raster means that all values in the
corresponding submatrix are equal, and a 1 means that there are two or more
different values. In addition, while the original k2-tree is divided into two bitmaps
T and L, where L represents nodes of the last level and T the rest of nodes of the

10

tree, k2-raster does not need bitmap L because it would be completely composed
of 0s, since the maximum and minimum values of a leaf node will always be equal,
as there is just one value at those nodes.

• The maximum values of the nodes of the tree are also treated separately. In order
to save space, all values, except the value of the root, are encoded as the difference
with respect to the maximum value of their parent nodes. Observe that those
differences will never be a negative value because the maximum value of a parent
node is always equal or greater than the maximum value of its children. We obtain
a tree composed of differences, which are stored as a unique array, denoted Lmax,
where the positions of the values are determined by the breadth-first traversal of
that tree. That sequence is composed of differences, which tend to be small, being
precisely the situation where DACs can provide good compression and direct access
to any given position. The maximum value of the root (rMax) is stored separately
as an integer in plain form.

• The construction of the structure for the minimum values uses the same technique
as for the maximum values. The minimum values are again encoded as differences
with respect to the minimum value stored at the parent. Again we have always
positive values given that the minimum value of a node is always equal or greater
than the minimum value of the parent node.4 The only difference is that we do
not need to store any value at the leaf nodes, as the maximum value is enough to
represent it. We denote Lmin this array containing the differences for the minimum
values, which is also encoded using DACs. The minimum value of the root (rMin)
is also stored separately as an integer in plain form.

If T has t bits, Lmax has at least t values, and in the first t values of Lmax, the ith

value corresponds to the maximum value in the submatrix represented by the ith bit of
T , as Lmax has one maximum value for each internal node of the tree. That is, they
are aligned, since both sequences use the same breadth-first traversal to determine the
ordering. However, usually Lmax has more elements, namely the values required for the
last level of the tree (which are represented in Lmax but not in T). Lmin only contains
values for those internal nodes z with T [z] = 1, since the nodes with T [z] = 0 has a
minimum value equal to its maximum value, and it is already stored in Lmax. Since the
first t values of T and Lmax are aligned, given a position z of T , its corresponding value
in Lmax is the zth number, and we can easily obtain its position in Lmin as rank(T, z).

Figure 4 shows in the upper part a conceptual tree representing a k2-raster. It
corresponds to the same raster used in Figure 3. This conceptual tree has an improvement
with respect to that in Figure 3, namely the maximum and minimum values stored at
each node are now encoded using differences with respect to the values of its parent. The
conceptual tree is just shown for illustrative purposes, we only store the data structures
shown in the bottom part of the figure. Observe that when the maximum and minimum

4The minimum value of a node could also be represented as a difference with respect to the maximum
value of that node. In fact, since only differences greater than zero are represented, we could subtract 1
to this difference value. This variant has also been proved experimentally and it obtained comparable
results.

11

Figure 4: Compact representation of the conceptual k2-raster using differences for the maximum and
minimum values (top). Data structures T , Lmax and Lmin used for representing compactly the k2-
raster (bottom). Global maximum and minimum values are also stored separately.

values are equal, only the maximum value is stored. Using differences instead of the
actual values causes that the final sequence of integers to encode is mostly composed of
small numbers (assuming some uniformity among the values of the input raster matrix),
and this will be exploited by DACs encoding.

Construction

The construction of k2-raster can be easily done using a recursive procedure. The
algorithm consists in a depth-first traversal of the tree that outputs, separately for each
level ` of the tree, the bit array of the tree representation T` and the lists of maximum
and minimum values for the nodes of that level `, which we will call V max` and V min`.
Then, T can be obtained by concatenating bitmaps T` for all levels of the tree, and
Lmax and Lmin can be obtained from V max` and V min` respectively, by computing
the differences between parents and children, concatenating the sequences of all levels,
and encoding the final sequences using DACs. The total time of the algorithm is linear in
the number of cells of the matrix, that is, O(nm). In fact, it is optimal, since it processes
the raster accessing each cell only once.

12

Algorithm 1: Build(n, `, r, c) computes T , V max and V min of the k2-raster
representation from matrix M and returns (rMax, rMin)

1 minval←∞
2 maxval← 0
3 for i← 0 . . . k − 1 do
4 for j ← 0 . . . k − 1 do
5 if ` = dlogk ne then /* last level */

6 if minval > Mr+i,c+j then
7 minval←Mr+i,c+j

8 end
9 if maxval < Mr+i,c+j then

10 maxval←Mr+i,c+j

11 end
12 V max`[pmax`]←Mr+i,c+j

13 pmax` ← pmax` + 1

14 else /* internal node */

15 (childmax, childmin)← Build(n/k, ` + 1, r + i · (n/k), c + j · (n/k))
16 V max`[pmax`]← childmax
17 if maxval <> minval then
18 V min`[pmin`]← childmin
19 pmin` ← pmin` + 1
20 T`[pmax`]← 1

21 end
22 pmax` ← pmax` + 1
23 if minval > childmin then
24 minval← childmin
25 end
26 if maxval < childmax then
27 maxval← childmax
28 end

29 end

30 end

31 end
32 if minval = maxval then
33 pmax` ← pmax` − k2

34 end
35 return (maxval,minval)

The algorithm proceeds as follows: for any level except for the last level of the tree, it
performs k2 recursive calls, each one for the k2 submatrices resulting from a subdivision.
When it reaches the last level of the tree, that call processes k2 leaf nodes of the tree,
which correspond to cells of the original matrix. It checks whether the k2 cells are all
equal. If they are all equal, it just returns that value as maximum and minimum values;
otherwise, it appends those k2 values to V max`, compute their maximum and minimum
values and return them as result of the call.

When returning after a recursive call, the algorithm obtains the maximum and min-

13

imum values of its k2 children. For each child, if these values are different, it appends
these values to V max` and V min` and sets up a 1 in the T` of that level. If the maxi-
mum and minimum values are equal, it appends the value to V max` and sets up a 0 in
T`. After processing the k2 children, it checks whether all the maximum and minimum
values are equal, which indicates that all the children contain the same value. Thus, the
algorithm must undo the last operations, as these nodes will not have a representation
in the data structure. This can be easily done by removing the last k2 positions of T`

and V max`, or just moving the pointer that indicates their last written position, k2

positions backwards. Finally, the algorithm returns the maximum and minimum values
to its parent.

Algorithm 1 shows the pseudocode of the construction process. It is invoked as
Build(n, 1, 0, 0), where the first parameter is the (possibly extended) raster matrix size,
the second is the current level, the third is the row offset of the current submatrix, and
the fourth is its column offset. It assumes that k, T`, V max`, and V min` are global
variables, and that T`, V max`, and V min` have been initialized as empty sequences.
In addition, the global variables pmax` and pmin` are used to know the last written
position of V max` and V min` respectively. After running the algorithm, all T` must be
joined to make up T , the same must be done with V max` and V min` to obtain V max
and V min, which, in turn, must be converted into Lmax and Lmin by computing the
differences and encoding with DACs. Observe that the algorithm returns the maximum
and minimum values of the input matrix, that is, rMax and rMin, which must be
represented in plain form.

3.2. Query algorithms

We describe in this section the algorithms that navigate the k2-raster to solve queries
over the raster matrix. We include pseudocodes and examples for some queries to better
illustrate the most important procedures.

Obtaining a cell value

To obtain the value of a given cell, the algorithm performs a top-down traversal of
the tree. It traverses the node at each level corresponding to the submatrix that contains
the queried cell. During the descent through the tree, the algorithm should decode the
maximum values stored at the traversed nodes, by subtracting each value from that in
the parent. This is needed, since once we reach the queried cell, the stored value is kept
as a difference with respect to the maximum value stored at the parent.

Algorithm 2 shows the pseudocode of this query. To obtain the value stored at cell
(r, c) of the raster matrix, that is, cell Mrc at row r and column c, it is invoked as
getCell(n, r, c,−1, rMax), where n is the size of the matrix, (r, c) is the position of the
queried cell, −1 corresponds to the position in T of the node to process (the initial −1
is an artifact because T does not represent the root node), and rMax is the maximum
value in the whole raster. T , Lmax, and k are global variables. It is assumed that
rank(T,−1) = 0.

This query has a worst-case time O(logk n · L), which corresponds to a full traversal
from the root node to the last level of the k2-raster requiring to decode a value from
Lmax at each level. L denotes the number of levels used in DACs for representing Lmax,

14

Algorithm 2: getCell(n, r, c, z,maxval) returns the value at cell (r, c)

1 z ← rank(T, z) · k2

2 z ← z + br/(n/k)c · k + bc/(n/k)c
3 val← accessDACs(Lmax, z)
4 maxval← maxval − val
5 if z ≥ |T | or T [z] = 0 then /* leaf */

6 return maxval
7 else /* internal node */

8 return getCell(n/k, r mod (n/k), cmod (n/k), z,maxval)
9 end

which depends on the largest number encoded in the sequence. This time will be lower
when the queried cell is surrounded by cells with the same value.

To illustrate how this query is computed, we will obtain the value at position (5, 1) of
the raster shown in Figure 5,which is the cell surrounded with a circle. In the bottom part
of the figure we include the corresponding conceptual tree, which is represented using the
data structures shown in Figure 4. We invoke the algorithm with getCell(8, 5, 1,−1, 5).
Having as input the node corresponding to the whole 8 × 8 matrix, the first step (lines
1–2) is to find the position in T (and thus in Lmax) of the node corresponding to the
submatrix 4× 4 that contains the queried cell, which in our example is the submatrix q2

of the Figure 5, that is, z ← rank(T,−1) · 4 + 5/4 · 2 + 1/4 = 2. Then, the maximum
value of q2 is obtained (lines 3–4) as follows. First the algorithm obtains the value stored
in Lmax as val ← accessDACs(Lmax, 2) = 1, and then it subtracts that value from
the maximum value received as a parameter maxval ← 5 − 1 = 4. Next, the condition
of line 5 is checked to determine whether we are in an internal node or not. Since z =
2 < |T | = 16 and T [2] = 1, it recursively invokes getCell(8/2, 5 mod 4, 1 mod 4, 2, 4) =
getCell(4, 1, 1, 2, 4). Then, the algorithm repeats the same procedure in the next level,
this time having as input the node corresponding to submatrix q2.

Lines 1–2 find the position in T and Lmax of the submatrix of q2 containing the
queried cell as z ← rank(T, 2) · 4 + 1/2 · 2 + 1/2 = 12 + 0 + 0 = 12, which corresponds
to the submatrix q20 of Figure 5. Then, the algorithm obtains the maximum value of
q20 as val ← accessDACs(Lmax, 12) = 0, maxval ← 4 − 0 = 4. Since z = 12 < |T |
and T [12] = 1, the algorithm recursively invokes getCell(4/2, 1 mod 2, 1 mod 2, 12, 4) =
getCell(2, 1, 1, 12, 4).

Having the node corresponding to submatrix q20 as input, the algorithm obtains the
position of the submatrix that contains the queried cell (this time is a 1 × 1 submatrix
only containing that cell) as z ← rank(T, 12) · 4 + 1/1 · 2 + 1/1 = 39, and its value as
val ← accessDACs(Lmax, 39) = 1, maxval ← 4− 1 = 3. Finally, since z = 39 ≥ |T | =
16, a 3 is returned, which is the content of cell (5, 1).

In the conceptual tree of Figure 5, we highlight the nodes affected by this example
with ellipses drawn with solid lines.

Obtaining all the values of a region

Obtaining a region of the raster matrix can be done more efficiently than just obtain-
ing its cells individually using getCell, since the same top-down traversal of the tree can

15

Figure 5: Submatrix subdivision and conceptual tree example to illustrate getCell and getWindow
operations. We highlight the nodes used in the examples.

be used for extracting values from adjacent positions. Thus, decoding maximum values
is performed just once per traversed node, instead of once per cell.

Algorithm 3 shows the pseudocode for this query, which is also a recursive procedure.
To obtain all the cells contained inside a window [r1, r2]×[c1, c2], the algorithm is invoked
as getWindow(n, r1, r2, c1, c2,−1, rMax). Again, k, T , and Lmax are considered global
variables.

Let us illustrate the algorithm with an example using the raster matrix shown in
Figure 5. We want to know the cell values in the range [5, 6] × [0, 1], which is the
submatrix surrounded with a square with dotted lines in the figure. In the conceptual
tree of Figure 5, we highlight the nodes affected by this example with rectangles drawn
with dotted lines.

The algorithm is invoked with getWindow(8, 5, 6, 0, 1,−1, 5), that is, having as input
the size of the whole matrix M , the position of the queried range in M , the position in
T of the node representing M (a −1, since the root node is not represented), and the
maximum value of M . First, the algorithm computes the position in T and Lmax of
the first children of the root node as z ← rank(T,−1) = 0. Then, the algorithm has
to determine which submatrices of the first level have to be further inspected to solve
the query, that is, which submatrices overlap the queried region. In our case, we only
have to inspect the bottom-left submatrix of the current submatrix (corresponding to
i = 1, j = 0 in line 12), which is the submatrix denoted as q2. Lines 3–6 and 8–9 give
the relative position of the queried range inside q2, in our example, the queried region

16

Algorithm 3: getWindow(n, r1, r2, c1, c2, z,maxval) returns all cells from region
[r1, r2] to [c1, c2]

1 z ← rank(T, z) · k2

2 for i← br1/(n/k)c . . . br2/(n/k)c do
3 if i = br1/(n/k)c then r′1 ← r1 mod (n/k) ;
4 else r′1 ← 0;
5 if i = br2/(n/k)c then r′2 ← r2 mod (n/k) ;
6 else r′2 ← (n/k)− 1;
7 for j ← bc1/(n/k)c . . . bc2/(n/k)c do
8 if j = bc1/(n/k)c then c′1 ← c1 mod (n/k) ;
9 else c′1 ← 0;

10 if j = bc2/(n/k)c then c′2 ← c2 mod (n/k) ;
11 else c′2 ← (n/k)− 1;
12 z′ ← z + k · i + j
13 maxval′ ← maxval − accessDACs(Lmax, z′)
14 if z′ ≥ |T | or T [z] = 0 then /* leaf */

15 Output maxval ((r′2 − r′1) + 1) · ((c′2 − c′1) + 1) times
16 return

17 else /* internal node */

18 getWindow(n/k, r′1, r
′
2, c
′
1, c
′
2, z
′,maxval′)

19 end

20 end

21 end

is the submatrix [1, 2]× [0, 1] of q2, that is, it covers rows 1 and 2 and columns 0 and 1
of q2. Line 12 obtains the position z′ in T and Lmax corresponding to the submatrix
q2 as z′ ← 0 + 2 · 1 + 0 = 2. Next, the algorithm computes the maximum value of q2

as maxval′ ← 5 − accessDACs(Lmax, 2) = 5 − 1 = 4. Since T [2] = 1 and 2 < |T |,
that node is an internal node, and thus the recursive call getWindow(4, 1, 2, 0, 1, 2, 4) is
launched. That is, to solve our query, it has to return the cells in the region [1, 2]× [0, 1]
of the 4× 4 submatrix q2.

This call starts by computing the position of T and Lmax where the children of q2

start as z ← rank(T, 2) · 4 = 3 · 4 = 12. The for of line 2 iterates i over 0..1 and the for
of line 7 iterates j only over 0. Therefore, at this call, we have to treat two submatrices
of q2, the top-left and the bottom-left submatrices, denoted q20 and q22 in Figure 5.

• q20: lines 3–6 and 8–9 give the relative position of the queried range inside q20.
Observe that the part of the queried range that overlaps q20 is the submatrix
[1, 1]× [0, 1] within q20, which corresponds to submatrix [5, 5]× [0, 1] in the original
matrix. Now, the algorithm obtains the position in T and Lmax of the informa-
tion corresponding to q20 as z′ ← 12 + 2 · 0 + 0 = 12 and we obtain the new
maximum value as maxval′ ← 4 − accessDACs(Lmax, 12) = 4 − 0 = 4. Given
that T [12] = 1 and 12 < |T |, that node is an internal node, and thus the recursive
call getWindow(2, 1, 1, 0, 1, 12, 4) is performed.

The execution of this call starts by computing the position in Lmax where the
17

children of q20 start, z = rank(T, 12) · 4 = 36. The for of line 2 iterates i only over
1 and the for of line 7 iterates j over 0..1. That is, this call has to process the
bottom-left and bottom-right submatrices of q20. Those submatrices only contain
one cell, that is, they are leaves. For the bottom-left leaf, the algorithm computes
its position in Lmax as z′ ← 36 + 2 · 1 + 0 = 38, and thus it obtains its value as
maxval′ ← 4 − accessDACs(Lmax, 38) = 4 − 0 = 4. On the other hand, for the
bottom-right leaf, its position in Lmaxer is z′ ← 36 + 2 · 1 + 1 = 39, and its value
is maxval′ ← 4− accessDACs(Lmax, 39) = 4− 1 = 3.

• q22: lines 3–6 and 8–9 obtain the relative position of the queried range inside
q22. Observe that the part of the queried range that overlaps q22 is the relative
submatrix [0, 0]× [0, 1] ([6, 6]× [0, 1], if we consider the whole matrix).

Recall that at the start of this call, z was set to 12, then we compute the position
in T and Lmax of the information associated with the submatrix q22 as z′ ←
12 + 2 · 1 + 0 = 14. Thus, we can obtain the maximum value of that submatrix as
maxval′ ← 4− accessDACs(Lmax, 14) = 4− 3 = 1.

Given that T [14] = 0, the node corresponding to q22 is a leaf node, therefore line
15 returns the value of maxval′ ((0 − 0) + 1) · ((1 − 0) + 1) = 2 times. That is,
since all cells of q22 have the same value (1), then it is represented as a leaf node,
and the part of q22 that overlaps the queried region contains two cells, and then
this call returns two 1s.

Retrieving cells with a given value or range of values

We describe now how to obtain the positions of all cells within the region [r1, r2] ×
[c1, c2] that contain values in the range [vb, ve]. If we want to run the query for the whole
matrix, we just adjust [r1, r2]× [c1, c2] to the complete matrix, and if we want to search
the cells having a particular value v, we adjust the range to [v, v].

The algorithm to solve this query combines the functionality of the original k2-tree
to solve range queries, which is able to efficiently obtain cells with 1s within a given
rectangle, with the indexing capabilities offered by the k2-raster, thanks to the storage
of the maximum and minimum values at the nodes of the tree. As in previous queries, the
search involves a top-down traversal of the tree, but it requires to perform two checks
at each level. After obtaining the branches of the tree corresponding to submatrices
overlapping the queried region, it has to check whether the maximum and minimum
values in those quadrants are compatible with the queried range, discarding those that
fall outside the range of values sought.

Algorithm 4 shows the pseudocode for this query. It is again a recursive procedure
invoked as searchValuesInWindow(n, r1, r2, c1, c2, vb, ve, rMax, rMin,−1), if we want
to retrieve the cells inside the window [r1, r2]× [c1, c2] having values in the range [vb, ve].
For this algorithm, k, T , Lmax, and Lmin are considered global variables.

Lines 1–14 of Algorithm 4 are exactly the same as those in getWindow. If the condition
of line 14 is true, we have reached a leaf node that corresponds to a submatrix that
overlaps the queried region. In the case of getWindow, the algorithm immediately returns
the values of the cells in that region, but now the algorithm searchValuesInWindow has
to perform the second test (line 16) to check whether the values of the cells in that region
have values in the range of values [vb, ve]. Observe that when reaching this point, all cells

18

Algorithm 4: searchValuesInWindow(n, r1, r2, c1, c2, vb, ve maxval,minval, z)
returns all cell positions from region [r1, r2]× [c1, c2] containing values within [vb, ve]

1 z ← rank(T, z) · k2

2 for i← br1/(n/k)c . . . br2/(n/k)c do
3 if i = br1/(n/k)c then r′1 ← r1 mod (n/k) ;
4 else r′1 ← 0;
5 if i = br2/(n/k)c then r′2 ← r2 mod (n/k) ;
6 else r′2 ← (n/k)− 1;
7 for j ← bc1/(n/k)c . . . bc2/(n/k)c do
8 if j = bc1/(n/k)c then c′1 ← c1 mod (n/k) ;
9 else c′1 ← 0;

10 if j = bc2/(n/k)c then c′2 ← c2 mod (n/k) ;
11 else c′2 ← (n/k)− 1;
12 z′ ← z + k · i + j
13 maxval′ ← maxval − accessDACs(Lmax, z)
14 if z ≥ |T | or T [z] = 0 then /* leaf */

15 minval′ ← maxval′

16 if minval′ ≥ vb and maxval′ ≤ ve then
/* all cells meet the condition in this branch */

17 Output corresponding region of cells
18 return

19 end

20 else /* internal node */

21 minval′ ← minval + accessDACs(Lmin, rank(T, z))
22 if minval′ ≥ vb and maxval′ ≤ ve then

/* all cells meet the condition in this branch */

23 Output corresponding region of cells
24 return

25 end
26 if minval′ > ve or maxval′ < vb then
27 return /* no cells meet the condition in this branch */

28 end
29 if minval′ < vb or maxval′ > ve then
30 searchValuesInWindow(n/k, r′1, r

′
2,

c′1, c
′
2, vb, ve,maxval′,minval′, z′)

31 end

32 end

33 end

34 end

in the considered region have the same value, or it is a region with only one cell, and thus
the algorithm only has to return the position of the cells of the submatrix that overlap
the queried region.

In case of an internal node (lines 20–29), we have to obtain the minimum value of

19

that submatrix, and compare the maximum and minimum values of the submatrix with
the queried range:

• If the minimum and maximum values of the submatrix are within the range [vb, ve]:
then all cells meet the condition of the query; thus, all cells inside the queried region
must be returned.

• If the minimum value of the submatrix is greater than ve or the maximum value is
smaller than vb: then no cell in the submatrix meets the criteria; thus nothing is
returned.

• If the values in the cells of the considered submatrix partially match [vb, ve]: then
we have to perform a recursive call to further inspect the submatrix.

Note that this query returns the positions of the values that meet the criteria. If
it is required to know the exact values of those positions, they could be retrieved with
getCell, or in a more efficient way by adding calls to getWindow when we report that a
submatrix has all its elements within the query range.

Checking the existence of a given value or range of values

Given a value or range of values and a region of the raster matrix, the k2-raster can
determine if inside that region, there exits at least one cell with a value in the queried
range or if all cells have values within the queried range. The first case is known as weak
semantics, whereas the latter is known as strong semantics.

This query can be done more efficiently than retrieving all the values of the region
and then checking if they lie within the range of values. This is basically a simplification
of Algorithm 4 that, in the case of weak semantics, as soon as it finds that a submatrix
of the queried region has values in the range [vb, ve] returns true. This can be done in a
non-leaf node without the necessity of reaching the leaves, with just the minimum and
maximum values stored at that node.

In the case of strong semantics, the query is basically the same, but now, as soon as
we find that there is, at least, one cell of a submatrix within the queried region that is
not within the range, the algorithm stops returning false.

The k2-raster also allows for other efficient queries, such as obtaining the maximum
value or the minimum values of region, etc.

3.3. Hybrid variant

As seen, most queries require a top-down traversal from the root node to some leaves
at the last level of the tree; therefore, the number of levels has an important impact in
query times. To reduce the height of the tree, one can use higher values of k. However,
the larger k is, the more space the k2-raster requires, as the uniformity of the values
decreases when we consider larger areas of the raster matrix. Thus, we present here a
modification of the basic k2-raster that significantly reduces the time of some queries
with the cost of just a slight increase of the space requirements.

This version allows us to modify how the matrix is partitioned during the first levels
of the tree, by allowing the use of two different values of the k parameter, k1 and k2; k1

is used in the subdivision of the first levels, and k2 for the rest. The target is to obtain
20

Figure 6: Example of using different k values. We indicate the minimum (light gray) and maximum
(dark gray) values of each submatrix for the three steps of the recursive subdivision of the construction
algorithm (top). Conceptual tree representation obtained from the construction of the hybrid k2-raster
with k1 = 4, k2 = 2 and n1 = 1 (bottom).

a smaller tree, by dividing each quadrant into more submatrices in the first levels, that
is, we obtain a wider and smaller tree; but using low values of k for the lower levels of
the tree, so that we obtain small submatrices with uniform values that can be compactly
represented.

Now, instead of k, the construction algorithm needs the two k1, k2 parameters and
another new parameter n1, which is the number of levels where the subdivision is done
using k1. More precisely, when creating the first n1 levels, each submatrix is partitioned
into k2

1 submatrices and for levels n1+1 until the leaf nodes is divided into k2
2 submatrices.

From now on, this is the standard version of k2-raster.
In Figure 6, we can see a k2-raster built with k1 = 4, k2 = 2, and n1 = 1. Observe

that in the first level (given that n1 = 1), the matrix is divided into k2
1 = 16 submatrices,

each producing a child node of the root and storing the maximum and minimum values
in that submatrix. Therefore, the root has 16 children. The second level uses k = 2,
and thus each submatrix is divided into 4 submatrices, which in this case are individual
cells. As it can be seen in the figure, the tree is wider and smaller, thus producing faster
top-down traversals.

This hybrid variant can be generalized by using a different k value for each level, such
that we subdivide level ` into k2

` submatrices. Using just two values of k, a larger one
for the first levels and a smaller one for the last levels of the tree, works well in practice.

3.4. A note on external storage

Although k2-raster was developed following the compact data structure paradigm,
which is aimed at storing the whole data structure in main memory, it is possible to store
part of it on external storage.

21

Notice that the k2-raster is composed of several data structures that all together
form a tree (at least conceptually). Most indexes are trees given that, among other
things, they can be easily split between main memory and disk. The idea is to keep as
many complete levels as possible in main memory, starting from the root of the tree. For
instance, the typical setup of a B-tree is keeping the first two levels in main memory,
and a third level in disk [65, Section 14.2.7]. Observe that this is quite efficient due to
two main reasons: i) searches start at the root and continue downwards until reaching
the last level; thus, with the aforementioned setup, this implies that searches of a given
entry of the index require O(1) disk reads (only for the last level), and ii) the largest
part of the tree is precisely the last level of the tree, therefore the upper levels can be
easily fitted in main memory.

Hence, with k2-raster we can follow a similar approach, keeping only the last level in
disk. This implies to store in main memory the following data structures: Tree, rMax,
rMin, Lmax, and Lmin, except for the part of Lmax corresponding to the last level. In
fact, when using secondary memory for the last level, we can increase the value of k
in the last level of the tree, as we are not that concerned about space requirements on
external storage. This allows decreasing the number of levels of the tree, fastening the
queries and reducing the space required in main memory for the upper levels.

Let us illustrate this with an example. One raster matrix used in the experimental
evaluation occupies 1,488.94 MBs uncompressed and 142.60 MBs as a k2-raster, where
Tree occupies 3.84 MBs, rMax and rMin 8 bytes, Lmax without the last level 15.38
MBs, and Lmin 14.54 MBs. Following the proposed idea, where we keep the last level in
secondary memory, our storage structure would require just 33.75 MBs in main memory,
which is more than reasonable for current machines. With this setup, searches can be
solved in main memory until reaching the last level, where some disk accesses may be
required. For instance, to obtain a given cell, only a disk access is enough to obtain that
cell.

4. Compressing the last level

4.1. Overview of the heuristic k2-raster (k2
H-raster)

The original k2-tree structure has a variant that uses a compressed representation of
the last level of the tree, which is composed of the submatrices of the original adjacency
matrix resulting from the last subdivision. This compression allows the use of a large
k in the last level, which shortens the tree and improves navigational times, without
increasing the space requirements of the structure. In fact, this compression generally
causes an improvement on the space results. Thus, following the same strategy used for
k2-trees, we also propose a variant of k2-raster that uses a compressed representation
of the last level of Lmax, that is, the entries corresponding to the submatrices of size
kLst×kLst of the original raster matrix resulting from last subdivision, where Lst denotes
the last level of the conceptual tree built by the k2-raster recursive subdivision of the
raster matrix and kLst the value of k used for that level.

Therefore, we will compress Lmax[Lst], which denotes the portion of Lmax repre-
senting the cells in Lst, that is, it represents the values of the kLst × kLst non-equal
submatrices of the original raster matrix that appear in the last level of the conceptual
tree. In the Figure 4, Lmax[Lst] is the part of Lmax labeled as L3.

22

Figure 7: Conceptual tree representation obtained from the construction of the k2-raster (center),
and conceptual tree using differential encoding (bottom), where instead of leaf nodes, the last level is
represented using kLst × kLst submatrices, being kLst = 2 for this example.

Figure 7 shows the problem we want to address: we maintain the same conceptual
representation for the raster matrix except for the last level of the tree, where we want to
compactly represent its submatrices of size kLst×kLst. We use kLst = 2 for this example,
but the idea is to use larger k values for the last level of the tree to shorten the tree and
improve time performance.

To compress Lmax[Lst], we will use a statistical compressor, which replaces the most
frequent source symbols by shorter codewords, using a semistatic zero-order modeler5,

5Semistatic modelers use a 2-pass algorithm, where the first pass reads the input stream to collect
statistics on the data to be compressed, and the second pass does the actual compression using parameters
set by the first pass. The statistics (model) are included as part of the compressed data. Zero-order
modelers provide the probability of each source symbol without taking into account the surrounding
symbols in the source stream. More detailed explanations of these concepts can be found in [66].

23

where the source symbols of the modeler are kLst × kLst submatrices. One possibility
is to follow this strategy for all the submatrices appearing at Lmax[Lst]. Thus, we can
proceed as follows: we create a vocabulary by extracting all the different kLst × kLst

last-level submatrices, sort the vocabulary by frequency, and substitute the kLst × kLst

contiguous values in Lmax corresponding to each submatrix by a pointer to its entry
in the frequency-sorted vocabulary. However, this strategy, which is the one used for
the binary last-level submatrices in the original k2-tree, is not suitable for k2-raster,
since there are many possible different integer submatrices of size kLst × kLst, some
of them appearing just once, and therefore, the vocabulary becomes very large. Since
the compressed representation of Lmax[Lst] consists not only of the pointers but also
of the vocabulary, we obtain no compression in case of large vocabularies with many
submatrices that are not repeated.

In the example of Figure 7, we would have a vocabulary composed of the five 2 × 2
different submatrices existing at the last level of the conceptual tree. The vocabulary,
sorted by frequency, would be v = {〈0001〉 , 〈1001〉 , 〈0011〉 , 〈0100〉 , 〈2021〉}. If we
represented Lmax[Lst] with the vocabulary approach, it would require the list of pointers
to each vocabulary entry, that is, p = {0, 2, 0, 1, 3, 1, 0, 4}, in addition to v. Thus, for those
submatrices appearing just once in Lmax[Lst], that is, 〈0011〉 , 〈0100〉 , 〈2021〉, we would
require their plain representation in v plus a pointer in Lmax[Lst]. The basic k2-raster
presented in the previous section would represent these submatrices by simply storing
their content, without the overhead of the pointer. Thus, this compression approach
would require more space for these submatrices, which may lead to worse space results.

Thus, compressing Lmax[Lst] requires a more refined approach, where we evaluate if
including a submatrix in the vocabulary will save space in the final representation. We
use an entropy-based heuristical approach to estimate these savings. Thus, we call this
improved variant of the technique heuristic k2-raster or k2

H -raster.

4.2. Building the k2
H-raster

More specifically, to obtain the k2
H -raster of a given raster matrix, we first build the

normal k2-raster, and then perform the following steps:

1. We traverse all kLst × kLst submatrices corresponding to Lmax[Lst], and com-
pute their frequency. Simultaneously, we also compute the frequency for all the
individual values that appear in those submatrices.

2. We estimate the average number of bits needed for representing a submatrix using
the vocabulary-based approach. Simultaneously, we estimate the average number of
bits needed for representing an individual cell value when using DACs to represent
them.

3. We sort the vocabulary of submatrices by frequency.

4. For each submatrix of the vocabulary:

(a) We estimate the cost of representing it as a compressed submatrix using the
vocabulary: we multiply its frequency by the average number of bits required
for representing a submatrix and we add the space needed to store it in the
vocabulary.

(b) We estimate the cost of representing it as individual values using DACs: we
multiply the frequency of the submatrix by its size (i.e., k2

Lst cells) and by the
average number of bits required for representing an individual number.

24

(c) We choose the representation with minimum cost. In case of choosing the
vocabulary-based approach, we assign a new correlative codeword to the sub-
matrix, which is a pointer to its position in the vocabulary.

We use the zero-order empirical entropy [67] to estimate the average number of bits
needed to encode the submatrices and the individual values (step 2). The zero-order
empirical entropy of a sequence S is H0(S) = −

∑
c∈Σ fc log2 fc, where Σ is the alphabet

of the sequence S and fc is the relative frequency of symbol c. When we estimate
the average number of bits to represent a matrix, the alphabet is the list of different
submatrices (the vocabulary of submatrices) in Lmax[Lst]. In the case of individual
values, the alphabet is formed by the list of different integers appearing in Lmax[Lst].

Then, for a given submatrix si having the values v1, v2, . . . vk2
Lst

in its cells, we

estimate the size (in bits) required to represent that submatrix in step 4a as Esi =
(fsi ·H0(Ss)) + (k2

Lst · w), where fsi is the frequency of appearance of si in Lmax[Lst],
H0(Ss) is the average number of bits to represent a submatrix using an alphabet of
submatrices (computed in step 1), and w is the machine word size. fsi · H0(Ss) is an
estimation of the size of the pointers that substitute the values of the submatrices in
Lmax[Lst]. In addition, we also need to store an entry in the vocabulary with the k2

Lst

values of the submatrix in plain form.
On the other hand, if we use all the individual values to represent the content of

submatrix si, in step 4b we estimate the size as Evi = fsi · k2
Lst ·H0(Sv), where H0(Sv)

is the average number of bits to represent each individual value (computed in step 2).
In step 4c, if Esi < Evi , we represent the occurrences of si in Lmax[Lst] with pointers
to the entry of the vocabulary of submatrices corresponding to si; otherwise we use the
original method, that is, we represent its values individually using DACs.

Notice that we just use the entropy as an estimation of the average bits needed to
represent a submatrix, which takes into account all the submatrices appearing at the last
level of the tree and their frequencies. This average value is computed just once, at the
beginning of the procedure (step 1); thus, it is used as a quick heuristic to determine the
convenience of including a submatrix in the vocabulary or not. It would be possible to
refine the procedure, recomputing the entropy after including or discarding the processed
submatrices, so the number of bits needed to represent a specific submatrix would be
more accurate. However, we prioritize efficiency in this procedure, as recomputing would
be very costly and would extremely degrade the compression time.

Once we have decided which submatrices will be represented with the vocabulary, we
need to create the structures to implement a new Lmax[Lst] where some submatrices
are represented as pointers to entries in a vocabulary and others as a list of individual
values. For this purpose, we create three additional structures:

• Bitmap isInVoc, which indicates whether one submatrix is represented with a
pointer to the vocabulary or not.

• Array encodedValues, which includes the codewords (pointers) for the submatrices
that are represented using the vocabulary.

• Array plainValues, which includes the encoding for the individual values of the
submatrices that are not represented using the vocabulary.

25

Then, we traverse again Lmax[Lst] and for each submatrix:

• If it is in the list of submatrices to be represented with the vocabulary, we set to 1
its corresponding bit in isInVoc and append its codeword to encodedValues.

• Otherwise, we set to 0 its corresponding bit in isInVoc and append all its values to
plainValues.

Algorithm 5 shows the pseudocode of the algorithm that obtains the bitmap isInV oc,
and the arrays encodedV alues and plainV alues. The inputs of the algorithm are Lmax,
and the position of Lmax where Lmax[Lst] starts (the parameter PLst). The value of
k for the last level of the tree, that is, kLst, is a global variable. For the computation
of these structures, we create a temporary vocabulary for all the submatrices (s) where
we store their values, frequency and codeword. When this procedure ends, we need to
add rank support to bitmap isInVoc and compact arrays encodedValues and plainValues
using DACs. In addition, we need to create the final vocabulary (V oc) by removing the
submatrices that are represented in plain form. The vocabulary is then composed of
those submatrices that appear frequently in the last level, according to the heuristic, and
they are represented uncompressed in the vocabulary, using k2

Lst · w bits each, where w
is the machine word size.

To better understand this variant, we show in Figure 8 the compact representation
(bottom) resulting from a conceptual tree (top). Notice that the codeword for each sub-
matrix at the vocabulary is implicit and it does not consume space in the representation,
as it corresponds to its position in the sorted vocabulary. In this example, only 〈0001〉
and 〈1001〉 have been selected for the vocabulary, as the others only have one appearance
in the last level and representing their individual values directly saves more space than
including them in the vocabulary and using a codeword.

When processing the last level of leaves from left to right, the first leaf is 〈0001〉, which
is one of the leaves that should be represented as a pointer to the vocabulary, therefore
the first bit of isInV oc is set to 1. In addition, the algorithm adds the codeword that
represents 〈0001〉 in the first position of encodedV alues, that is, it inserts a 0, since that
is the position of 〈0001〉 in the frequency-sorted vocabulary. The second submatrix is
〈0011〉, which should be represented in plain form, then the second bit of isInV oc is set
to 0 and the four values (〈0011〉) are stored in the first four position of plainV alues.
Next, we have a 〈0001〉, therefore the third bit of isInV oc is set to 1, and the second
entry of encodedV alues is filled with a 0, and so on.

4.3. Querying

The navigation over this variant differs from the navigation over the original k2-
raster when accessing the last level of Lmax. Instead of directly obtaining its values,
the k2

H -raster requires accessing the bitmap that indicates whether the submatrix is
stored compressed or in plain form, and accessing the corresponding sequence of encoded
or plain values. We illustrate how we access the last-level submatrices by showing how
the query getCell is done. Algorithm 6 shows the pseudocode of the query. Notice that
line 3 from Algorithm 2 has been replaced with lines 3–15. For the sake of simplicity, we
use the same k for all levels, but k may have different values at each level of the tree.

26

Algorithm 5: BuildH(Lmax,PLst) computes isInVoc, encodedValues, and
plainValues

1 s← subMatricesFreq(Lmax,PLst,kLst) /* Compute the frequency of each

different kLst × kLst submatrix in Lmax (step 1) */

2 v ← valuesFreq(Lmax,PLst)/* Compute the frequency of each different

value in Lmax (step 1) */

3 Hs ← entropy(s) /* Compute the entropy of the submatrices (step 2) */

4 Hv ← entropy(v) /* Compute the entropy of the values (step 2) */

5 sort(s) /* Sort the vocabulary of submatrices by frequency (step 3) */

6 for i← 0 . . . |s| − 1/* Determine if we represent the submatrix using a

codeword or its individual values (step 4) */ do
7 if ((Hs · s[i].freq) + (k2

Lst · w)) < (Hv · s[i].freq · k2
Lst) then

8 s[i].cdwd←computeNextCodeword()
9 else

10 s[i].cdwd← −1
11 end

12 end
13 j ← 0
14 posInEncoded ← 0
15 posInPlain ← 0
16 while j < |Lmax| do
17 si ←searchInS(Lmax[Lst][PLst + j . . . PLst + j + k2

Lst − 1]) /* Obtains the

data in s of the current submatrix */

18 if si.cdwd = −1 then /* The submatrix is stored in plain form */

19 isInVoc[j/k2
Lst]← 0

20 for t← 0 . . . k2
Lst − 1 do

21 plainValues[posInPlain + t]← si.values[t]
22 end
23 posInPlain ← posInPlain + k2

Lst

24 else /* The submatrix is stored compressed */

25 isInVoc[j/k2
Lst]← 1

26 encodedValues[posInEncoded]← si.cdwd
27 posInEncoded ← posInEncoded + 1

28 end
29 j ← j + k2

Lst

30 end

To illustrate this with an example, let us obtain the value of the cell at position (5,1)
of our running example. The algorithm is invoked as getCellH(8,5,1,−1,5). Lines 1–2
obtain the position in T and Lmax of the value corresponding to the 4 × 4 submatrix
that contains the queried cell, z ← rank(T,−1) · 4 + 5/4 · 2 + 1/4 = 2, which corre-
sponds to the bottom-left submatrix. Since 2 < |T |, we are in a level that is not the
last one, and thus the flow reaches line 14. Here, the process is the same as in the case
of the normal k2-raster, that is, the algorithm accesses the normal Lmax to obtain the

27

Figure 8: Compact representation of the conceptual k2H -raster using differences for the maximum and
minimum values (top). Data structures T , Lmax, Lmin, V oc, isInV oc, encodedV alues and plainV alues
used for representing compactly the k2H -raster (bottom).

maximum value of that submatrix: val ← accessDACs(Lmax, 2) = 1, and then it sub-
tracts that value from the maximum value received as a parameter maxval← 5− 1 = 4.
Then, the condition of line 17 is checked, and since the current node is not a leaf, the
flow reaches line 20, performing a recursive call getCellH(8/2, 5 mod 4, 1 mod 4, 2, 4) =
getCellH(4, 1, 1, 2, 4). In the recursive call, lines 1–2 find the position in T and Lmax
corresponding to the node representing the submatrix of the second level that contains
the queried cell: z ← rank(T, 2) · 4 + 1/2 · 2 + 1/2 = 12 + 0 + 0 = 12. Again, this
node is not in the last level of the tree, then the algorithm obtains the maximum value
of that submatrix val ← accessDACs(Lmax, 12) = 0, maxval ← 4 − 0 = 4 and per-
forms a recursive call getCellH(4/2, 1 mod 2, 1 mod 2, 12, 4) = getCellH(2, 1, 1, 12, 4).
In the next recursive call, z ← rank(T, 12) · 4 + 1/1 · 2 + 1/1 = 39. Now, z > |T |,
that is, we are accessing a leaf in the last level. Line 4 obtains the corresponding sub-
matrix among those at the last level: pos ← b(39 − |T |)/4c = b(39 − 16)/4c = 5.
Line 5 checks if that position is stored as a pointer to the vocabulary or is stored in
plain form. Since isInVoc[5] = 1, that submatrix is stored as a pointer to the vocab-
ulary. Then the algorithm obtains the position of its codeword in encodedValues as
pos ← rank1(isInVoc, 5) − 1 = 3. Next, the algorithm accesses encodedValues to ob-
tain the codeword of the submatrix: code ← accessDACs(encodedValues, 3) = 1. Thus,
the algorithm must obtain the queried cell from the submatrix encoded at position 1
of Voc as val ← Voc[1][1 · 2 + 1] = Voc[1][3] = 1. With that value, line 14 obtains
maxval ← 4 − 1 = 3. Finally, since z ≥ |T | (39 ≥ 16), a 3 is returned, which is the
content of cell (5, 1).

28

Algorithm 6: getCellH(n, c, r, z,maxval) returns the value at cell (c, r)

1 z ← rank(T, z) · k2

2 z ← z + bc/(n/k)c · k + br/(n/k)c
3 if z ≥ |T | then /* last level */

4 pos← b(z − |T |)/k2c
5 if isInVoc[pos] = 1 then /* encoded in Voc */

6 pos← rank1(isInVoc, pos)− 1
7 code← accessDACs(encodedValues, pos)
8 val← Voc[code][c · k + r]

9 else /* plain form */

10 pos← rank0(isInVoc, pos) · k2 + c · k + r
11 val← accessDACs(plainValues, pos)

12 end

13 else /* not last level */

14 val← accessDACs(Lmax, z)
15 end
16 maxval← maxval − val
17 if z ≥ |T | or T [z] = 0 then /* leaf */

18 return maxval
19 else /* internal node */

20 return getCellH(n/k, cmod (n/k), rmod (n/k), z,maxval)
21 end

The rest of query algorithms are easily modified in the same way, that is, only modi-
fying the accesses to the last level of Lmax in order to deal with the submatrices in the
vocabulary.

5. Experimental evaluation

5.1. Experimental Framework

We measured the space and time results obtained by the two different versions of the
proposed data structure, k2-raster (see Section 3), and the heuristic k2-raster, denoted
by k2

H -raster (see Section 4).
We performed two different sets of experiments. First, we compared the k2-raster

with previous compact data structures for raster datasets: k2-acc and k3-tree (see Sec-
tion 2.3). The second set of experiments compares k2-raster with a classical method
to compress rasters, namely Network Common Data Form (NetCDF)6, which includes
a data format to store rasters compressed or uncompressed and the software libraries to
access datasets in this format. By using those libraries, it is possible to transparently
access compressed netCDF datasets without performing an explicit decompression pro-
cedure. However, when accessing a compressed file, the library performs a (hidden for

6http://www.unidata.ucar.edu/software/netcdf/

29

the user) decompression procedure, which, since it uses Deflate to compress, must start
at the beginning of the dataset.

We separate these two sets of experiments given that compact data structures have
a different target with respect to classical approaches. While netCDF is focused on ob-
taining only compression, as explained, compact data structures obtain compression but
also good access times, sometimes even faster than accessing the uncompressed version.
Differences between access and query times obtained by netCDF and by compact data
structures are so high, that we cannot plot them together as the differences between
compact data structures would not be visible.

We measured construction time (only for the first set of experiments), the space
consumption, and the navigational time to answer these four types of queries:

• getCell : given a position in the raster matrix, this query obtains its cell value. The
time was measured by performing 1,000,000 different random queries and we report
the average time per query (in microseconds).

• getWindow : given a region or window of the raster matrix, this query retrieves all
cell values within that window. We measured the time for 100 random queries and
report the average time per retrieved cell (in nanoseconds).

• searchValuesInWindow : given a range of values and a region of the matrix, this
query retrieves all raster positions belonging to the given region whose value lies
within that range. We have defined two variants of this query: without any restric-
tion for the range of values and window size, and limiting the range length to 200
and the window size to 500× 500. In the first case, we measure the time for 10,000
random queries, and for the second case we measure the time for 100,000 random
queries. We report the average time per retrieved cell (in nanoseconds).

• checkValuesInWindow : given a region and a range, this query checks if all cell values
of the region are within the range of values (we call this variant strong checkVal-
uesInWindow) or if there exists at least one cell value in the region whose value lies
within the range of values (weak checkValuesInWindow). The time was measured
by performing 1,000,000 random different queries and obtaining the average time
per query (in microseconds for the first set of experiments and in milliseconds for
the second set).

Queries getCell and getWindow illustrate the impact on the time to access and re-
cover the original information when we represent the raster matrix with each of the
techniques, since they keep the information compressed. Queries searchValuesInWindow
and checkValuesInWindow illustrate the indexing capabilities of each representation.

All the experiments were run on a dedicated Intel R© CoreTM i7-3820 CPU @ 3.60GHz
(4 cores) with 10MB of cache, and 64GB of RAM. It ran Ubuntu 12.04.5 LTS with kernel
3.2.0-115 (64 bits), using gcc version 4.6.4 with -O9 options. Time results refer to cpu
user time. Space consumption was measured in compression percentage, computed as
the ratio (in percentage) between the uncompressed size of binary file containing the
original raster matrix and the size of the compressed representation.

30

5.2. Datasets

We used real data in our experiments. More concretely, we used data of different
nature from the following two sources:

• WorldClim7 dataset [68], which provides a set of layers with global climate infor-
mation. The whole world is divided into equal-spaced tiles, and each cell of a tile
is an integer number and has a resolution of about 1 square kilometer. Specifically,
we have used the dataset containing the value of the mean temperature, which was
measured in degrees Celsius with one decimal, and is represented using integers by
multiplying the value by 10.

• Spanish Geographic Institute8 (SGI), which includes several DTM (Digital Terrain
Model) data files that contain the spatial elevation data of the terrain of Spain,
stored as rectangular equal-spaced tiles with 5 meters of spatial resolution. Each
cell of a tile contains a real number of at most three decimal digits.

In our experiments, we analyzed the scalability and behavior of each technique when
varying the size of the input raster matrix and the number of different values included in
the raster. Thus, we have created several collections of datasets of different nature with
different properties of size and number of different values.

Tables 1 and 2 show the characteristics of collections of datasets with increasing sizes.
To obtain them, since in the original datasets all tiles have the same size, we have joined
different adjacent tiles to create raster matrices of different sizes. In addition, we have
considered different precision by using different number of decimal digits, in the case of
the dataset of spatial elevation values, to obtain variability on the number of different
values. Tables 1 and 2 show the average values of the main properties (size, number of
rows, number of columns and number of different values) for the collection of datasets
generated. Specifically, 1×1 matrices were built using just 1 tile, 2×2 matrices were
built using 2×2 adjacent tiles, and so on. For each size, we collected a set of different
matrices. For example, cat0-1×1 is composed of 25 1×1 matrices, each corresponding to
a different tile of the original dataset. The data shown in the tables represent the mean
values obtained by those 25 matrices. This allows us to report the average space and
time results obtained in the experiments for each collection, avoiding the dependence on
the selection of a unique matrix. The dataset at Table 1 will be denoted as eua in the
experiments, while the datasets at Table 2 will be denoted cat0 and cat3. The subscript
for these datasets indicates how many digits of the decimal digits were considered. By
considering more or less, we increase or decrease, respectively, the number of different
values existing in the raster matrix. Thus, we will report the results when using 0 decimal
digits (cat0) and 3 decimal digits (cat3). Notice that cat3 corresponds to raster matrices
of the original dataset.

In addition, to analyze the behavior of the methods when only the number of different
values varies, but not the matrix size, we generated a collection of matrices from just one
random tile (namely, the one denoted as MDT05-0533-H30-LIDAR). More concretely, we
have first truncated the original values by taking only the two most significant decimal

7http://www.worldclim.org/tiles.php
8http://www.ign.es

31

Table 1: Properties of dataset eua, obtained from WorldClim datasets. It includes raster matrices of
different size and number of different values of the input matrix.

different
Name size (MB) #rows #cols values

eua-1×1 49.44 3,600 3,600 252
eua-2×2 197.75 7,200 7,200 413
eua-3×3 444.95 10,800 10,800 474
eua-4×4 791.02 14,400 14,400 498

Table 2: Properties of datasets cat0 and cat3, obtained from DTM datasets. They include raster
matrices of different size and number of different values.

different
Name size (MB) #rows #cols values

cat0-1×1 91.49 4,100 5,849 868
cat0-2×2 369.03 8,242 11,737 1,201
cat0-3×3 834.76 12,403 17,643 1,503
cat0-4×4 1,488.94 16,564 23,564 1,761

cat3-1×1 91.49 4,100 5,849 779,405
cat3-2×2 369.03 8,242 11,737 1,066,043
cat3-3×3 834.76 1,2403 17,643 1,304,704
cat3-4×4 1,488.94 16,564 23,564 1,545,248

digits. Then we have created other 5 raster matrices MDT05-0533-H30-LIDAR�x by
shifting x bits of the value of each cell, for x = 1, 3, 5, 7, 9. By doing this, we have
generated a collection of matrices with the same size and different number of different
values.9 We have not used the original values with all their precision due to the problems
of k2-acc and k3-tree for running over datasets with a large number of different values.
We denote this dataset as MDTx in the experiments, and show its properties in Table 3.

5.3. Comparison with compact data structures

We used a hybrid configuration for k2-raster and for k2
H -raster, with k1 = 4, k2 =

2, n1 = 4. k2
H -raster used kLst = 4 for the last level of the tree, which made its tree one

level shorter. We do not include in the comparison the basic variant that uses the same
value of k for all the levels of the tree as it has been proven that the hybrid approach
obtains better results [1]. Both variants used an implementation for supporting rank
operations that adds 5% of extra space on top of the bit sequence T and provides fast
queries [69]10. In addition, Lmax and Lmin were encoded using the version of DACs
that optimizes the space usage while restricting the maximum number of levels. More
precisely, we have limited the number of levels to 3. We compared both variants of our

9Notice that by shifting x bits, each value is divided by 2x, thus decreasing the number of different
values in the raster.

10If more space and less time are desired, one could replace the implementation by another that uses
37.5% extra space and is much faster.

32

Table 3: Dataset MDTx, obtained from tile MDT05-0533-H30-LIDAR. It includes raster matrices of the same
size, but different number of values.

different
Name size (MB) #rows #cols values

MDT05-0533-H30-LIDAR�9 86.48 3,881 5,841 227
MDT05-0533-H30-LIDAR�7 86.48 3,881 5,841 903
MDT05-0533-H30-LIDAR�5 86.48 3,881 5,841 3,606
MDT05-0533-H30-LIDAR�3 86.48 3,881 5,841 14,415
MDT05-0533-H30-LIDAR�1 86.48 3,881 5,841 57,586
MDT05-0533-H30-LIDAR�0 86.48 3,881 5,841 114,966

proposal with k2-acc and k3-tree using the same hybrid configuration. In addition, we
configured parameter S = 14 for k2-acc, which is a parameter used to divide the input
raster into 2S subrasters, each one producing a set of k2-trees.

5.3.1. Construction time

Figure 9(left) shows the comparison among all the methods when measuring the con-
struction time. Plots only show the results for k2-raster, k2

H -raster, and k3-tree, as the
times obtained by k2-acc were more than 2 order of magnitude slower. Moreover, k3-tree
and k2-acc were not able to create the compressed representation of those raster matrices
with a large number of different values, more concretely, they failed when constructing the
compressed representation for MDT05-0533-H30-LIDAR�0, MDT05-0533-H30-LIDAR�1,
and all the matrices from dataset cat3.

The construction process for k2-raster and k2
H -raster is the same, except for the last

level of the representation. k2-raster processes all levels analogously, whereas k2
H -raster

has one level less than k2-raster, and it needs to create a vocabulary to compress its
last level submatrices. Thus, at that point, the construction time differs between the two
structures. To analyze their behavior, we ran two types of experiments, one where we
only varied the number of different values, and another where we also varied the size of
the input matrices.

For the first experiment we used dataset MDTx, described at Table 3. The results
are shown in Figure 9(a). The y-axis shows the time consumption for constructing the
compressed representation (in seconds) and the x-axis shows the number of different
values for each dataset.

As expected, when increasing the number of different values, the construction time
worsens. This happens because it is more likely that a submatrix has more than a single
value, which must be divided and processed again. k2-raster and k2

H -raster behave sim-
ilarly, and clearly outperform k3-tree, which shows a scalability problem. As previously
mentioned, k2-acc was not included in the plot due to its bad performance. k2

H -raster
achieves better results when there is a small number of different values, but it becomes
worse than k2-raster for larger numbers of different values. Notice that, in these ex-
periments, k2

H -raster has one level less than k2-raster. In addition, when the number
of different values in the matrix is low, the number of different submatrices in level Lst
is also low, as there is little variability, and the cost of computing the heuristic is not

33

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

227 903 3606 14415 57586 114966

T
im

e
(s

)

Number of different values

k3-tree
k2-raster
k2

H-raster

(a) MDTx – construction time

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

227 903 3606 14415 57586 114966

C
om

pr
es

si
on

 (
%

)

Number of different values

k2-acc
k3-tree

k2-raster
k2

H-raster

(b) MDTx – compression

 0

 10

 20

 30

 40

 50

 60

3600x3600 7200x7200 10800x10800 14400x14400

T
im

e
(s

)

Raster size

k3-tree
k2-raster
k2

H-raster

(c) eua – construction time

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

3600x3600 7200x7200 10800x10800 14400x14400

C
om

pr
es

si
on

 (
%

)

Raster size

k2-acc
k3-tree

k2-raster
k2

H-raster

(d) eua – compression

 0

 20

 40

 60

 80

 100

 120

 140

4100x5849 8242x11737 12403x17643 16564x23564

T
im

e
(s

)

Raster size

k3-tree
k2-raster
k2

H-raster

(e) cat0 – construction time

 9

 10

 11

 12

 13

 14

 15

 16

 17

 18

4100x5849 8242x11737 12403x17643 16564x23564

C
om

pr
es

si
on

 (
%

)

Raster size

k2-acc
k3-tree

k2-raster
k2

H-raster

(f) cat0 – compression

 0

 10

 20

 30

 40

 50

 60

 70

 80

4100x5849 8242x11737 12403x17643 16564x23564

T
im

e
(s

)

Raster size

k2-raster
k2

H-raster

(g) cat3 – construction time

 46

 48

 50

 52

 54

 56

 58

 60

 62

4100x5849 8242x11737 12403x17643 16564x23564

C
om

pr
es

si
on

 (
%

)

Raster size

k2-raster
k2

H-raster

(h) cat3 – compression

Figure 9: Construction time (left) and compression percentage (right) for datasets of different nature.

34

significant. Thus, when the raster matrix has a small number of different values, com-
puting the heuristic is faster than processing one extra level, and thus the k2

H -raster
is built faster than k2-raster. When the number of different values increases, the size
of the vocabulary grows, and thus, the construction process becomes slower. There are
no scalability issues due to this parameter for our proposed structures, as times become
almost constant when increasing the number of different values.

We show in Figures 9(c), 9(e), and 9(g) the time consumption to build datasets from
collections eua, cat0, and cat3 respectively. The y-axis shows the construction time (in
seconds) and the x-axis shows the size of each dataset. We can also see that k2-raster and
k2
H -raster obtain similar results, being k2

H -raster faster for those datasets with a lower
number of different values. Both of our approaches are faster than the other methods
of the state of the art. Neither k3-tree nor k2-acc were able to create the compressed
representation for collection cat3, which includes raster matrices with a large number
of different values. Hence, our proposals show again that are more convenient for real
datasets containing a high cardinality.

5.3.2. Space requirements

Figure 9(right) shows the compression obtained by the four methods, k2-acc, k3-
tree, k2-raster and k2

H -raster over all the datasets. Figure 9(b) shows the results for
dataset MDTx, where the number of different values grows while maintaining the size of
the raster matrix. With 227 values, the four methods obtained a similar result, around
3% of the original collection size. When the number of different values grows up to 903
values, k2

H -raster begins to obtain better results compared to the other methods. k2
H -

raster achieves a compression of 7.5% while for the rest of the structures is around of
9%. With the third raster matrix, which contains 3606 different values, the compression
of k2-acc is significantly worse (43%). Again, k2

H -raster obtains the best compression
(16%), followed by the k2-raster (19%) and k3-tree (32%). This tendency continues with
the fourth raster matrix of the dataset. Thus, using a vocabulary-based approach and
a selection heuristic improves the compression up to 9% with respect to the standard
k2-raster and both structures obtain better results than the techniques of the state of
the art. In addition, our techniques were able to create the compressed representation
for all datasets, including those with a large number of different values.

We also show the comparison of the compression obtained over the other three collec-
tions. As expected, k2

H -raster obtains the best compression for all datasets. Moreover,
k2-acc can only represent the smallest matrices from datasets cat0, and none from cat3,
whereas k3-tree is not able to represent any matrix from dataset cat3. These experiments
demonstrate that our solutions can deal with large datasets, rather than the current state
of the art. In addition, k2-raster and k2

H -raster maintain good compression ratios even
when the number of values of the dataset grows.

5.3.3. Query times

In this section we show the results of the experiments for the queries described in
Section 5.1. Again, we used datasets MDTx, eua, cat0, and cat3, and compared the
results obtained by our two methods, k2-raster and k2

H -raster, to those obtained by the
techniques of the state of the art, k3-tree and k2-acc.

35

Time of getCell

Figure 10(left) shows the average time to retrieve the value of a given cell (in mi-
croseconds). k2

H -raster outperforms the rest of the techniques for all cases, followed
closely by the standard version of k2-raster. Our versions are up to 6 times faster than
k3-tree and 9 times faster than k2-acc.

The query time of our techniques depends on the height of the tree; in the worst case,
it needs to descend down to the last level of the tree, checking one node per level. As
we can see in Figure 10(a), query times of k2

H -raster, and also of k2-raster, are almost
constant even when the number of different values is high. In addition, k2

H -raster uses
a higher value of k for the last level, which decreases the number of tree levels; thus,
the time for retrieving an individual cell becomes smaller than using k2-raster, since
searching inside the vocabulary is very efficient given that the values are kept in plain
form.

From the results, we can observe that k2-acc and k3-tree are not suitable for datasets
with a large number of different values. To retrieve a value of a cell, k2-acc performs a
binary search among all its k2-trees, and the number of k2-trees depends on the number
of different values. Thus, for datasets with a large number of different values, obtaining
the cell value is slow. In the case of k3-tree, the z dimension increases accordingly to the
number of different values; thus, the searching time by this dimension also grows.

Figure 10(c), Figure 10(e), and Figure 10(g) show the behavior for datasets with
different input size. Again k2

H -raster and k2-raster obtain the best results.

Time of getWindow

Figure 10(right) represents the average time consumption to retrieve all values of a
window (measured in nanoseconds per retrieved value). k2

H -raster performs better than
the other three methods for all datasets. k3-tree gets time results similar to those of
k2-raster when the number of different values is small, but k2-raster obtains better
results with a large number of values, as it is shown in Figure 10(b). The other three
plots of Figure 10(right) represent the behavior with different sizes for the input matrix.
As expected, k2

H -raster has the best performance. k2-raster and k3-tree obtain similar
result whilst the time of k2-acc is still the slowest by far. While the other methods know
where to find the values of each cell, the k2-acc needs to search all its k2-trees until it
finds the values corresponding to the cells that is searching, which is a very slow process.

An alternative procedure to obtain all the values of a region is to retrieve each value
cell per cell. Comparing the results measured in time per cell retrieved by getCell at
Figure 10(left) with those obtained by getWindow at Figure 10(right), the query getWin-
dow takes advantage of the fact that it is possible to obtain adjacent cell values with the
same top-down traversal of the tree. Our structures obtain the final value of a cell when
reaching a leaf node. If a leaf node, which represents a submatrix with all values equal,
belongs to upper levels of the tree, k2-raster and k2

H -raster can complete part of the
final result in just one step, without obtaining each value cell per cell.

Time of searchValuesInWindow

This query retrieves all cells whose values lie within a given range. Figure 11 shows
the time consumption per retrieved cell in nanoseconds. We show the results obtained
when we do not limit the size of the window nor the range length (left part of the figure),

36

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

227 903 3606 14415 57586 114966

T
im

e
(µ

s)

Number of different values

k2-acc
k3-tree

k2-raster
k2

H-raster

(a) MDTx – getCell

 1

 10

 100

 1000

 10000

227 903 3606 14415 57586 114966

T
im

e
(n

s)
 (

lo
g

sc
al

e)

Number of different values

k2-acc
k3-tree

k2-raster
k2

H-raster

(b) MDTx – getWindow

 0

 0.5

 1

 1.5

 2

 2.5

3600x3600 7200x7200 10800x10800 14400x14400

T
im

e
(µ

s)

Raster size

k2-acc
k3-tree

k2-raster
k2

H-raster

(c) eua – getCell

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

3600x3600 7200x7200 10800x10800 14400x14400

T
im

e
(n

s)

Raster size

k2-acc
k3-tree

k2-raster
k2

H-raster

(d) eua – getWindow

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

4100x5849 8242x11737 12403x17643 16564x23564

T
im

e
(µ

s)

Raster size

k2-acc
k3-tree

k2-raster
k2

H-raster

(e) cat0 – getCell

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

4100x5849 8242x11737 12403x17643 16564x23564

T
im

e
(n

s)

Raster size

k2-acc
k3-tree

k2-raster
k2

H-raster

(f) cat0 – getWindow

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

4100x5849 8242x11737 12403x17643 16564x23564

T
im

e
(µ

s)

Raster size

k2-raster
k2

H-raster

(g) cat3 – getCell

 30

 40

 50

 60

 70

 80

 90

 100

4100x5849 8242x11737 12403x17643 16564x23564

T
im

e
(n

s)

Raster size

k2-raster
k2

H-raster

(h) cat3 – getWindow

Figure 10: Time results for getCell (left) and getWindow (right) over datasets with different size and
number of different values. We show average time per cell retrieved in microseconds for getCell and
nanoseconds for getWindow.

37

 0

 20

 40

 60

 80

 100

 120

 140

 160

227 903 3606 14415 57586 114966

T
im

e
(n

s)

Number of different values

k2-acc
k3-tree

k2-raster
k2

H-raster

(a) MDTx – no restriction

 0

 50

 100

 150

 200

 250

 300

 350

 400

227 903 3606 14415 57586 114966

T
im

e
(n

s)

Number of different values

k2-acc
k3-tree

k2-raster
k2

H-raster

(b) MDTx – restricted

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

3600x3600 7200x7200 10800x10800 14400x14400

T
im

e
(n

s)

Raster size

k2-acc
k3-tree

k2-raster
k2

H-raster

(c) eua – no restriction

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

3600x3600 7200x7200 10800x10800 14400x14400

T
im

e
(n

s)

Raster size

k2-acc
k3-tree

k2-raster
k2

H-raster

(d) eua – restricted

 0

 10

 20

 30

 40

 50

 60

4100x5849 8242x11737 12403x17643 16564x23564

T
im

e
(n

s)

Raster size

k2-acc
k3-tree

k2-raster
k2

H-raster

(e) cat0 – no restriction

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 55

4100x5849 8242x11737 12403x17643 16564x23564

T
im

e
(n

s)

Raster size

k2-acc
k3-tree

k2-raster
k2

H-raster

(f) cat0 – restricted

 2.2
 2.4
 2.6
 2.8

 3
 3.2

 3.4
 3.6
 3.8

 4
 4.2
 4.4

4100x5849 8242x11737 12403x17643 16564x23564

T
im

e
(n

s)

Raster size

k2-raster
k2

H-raster

(g) cat3 – no restriction

 3500

 4000

 4500

 5000

 5500

 6000

4100x5849 8242x11737 12403x17643 16564x23564

T
im

e
(n

s)

Raster size

k2-raster
k2

H-raster

(h) cat3 – restricted

Figure 11: Time results for searchV aluesInWindow using random windows and ranges without any
restriction (left) and when restricting the maximum window size to 500 × 500 and the range length to
200 (right). Time results are measured in nanoseconds per retrieved cell.

38

and when limiting the range length to 200 and the window size to 500 × 500 (right).
We distinguish these two distinct scenarios, as time results show different behaviors.
When selecting random ranges without any restriction, these ranges become larger when
the number of different values grows. Thus, if the range is large, the query is usually
answered in the upper levels of the representation, as there exist a vast amount of valid
values that meet the search condition. In addition, the number of retrieved cells is higher,
making the time/cell ratio smaller. On the other hand, if we limit the range length to
200, we avoid these two effects; thus, searching times worsen as the number of different
values in the raster matrix grows, as the query becomes more selective. Collection eua

contains very few different values (less than 500 different values); thus, all techniques
behave similarly in these two scenarios, as restricting the range length to 200 produces
almost no effect.

Our solutions perform better than the state of the art in all cases. With the indexation
of the minimum and maximum values in the nodes of the tree, our structures are able
to determinate if a region has any valid cell or even if all cells lie within the given range
of values by only checking one node; in other case, they skip that node and continue the
process with the rest of tree. Comparing the techniques from the state of the art, k2-acc
gets better results than k3-tree in most datasets, especially when the number of different
values is high, as it is shown in Figure 11(a). This is due to the fact that the k2-acc only
needs to check two k2-trees, that is, the k2-tree of the minimum value and the k2-tree of
the maximum value of the given range.

Time of checkValuesInWindow

Figure 12 shows the time to check if there exists at least one cell in the region whose
value lies within the range of values (left) or if all cells of the region are within the range
of values (right).

For the first case, which corresponds to weak checkValuesInWindow, k2-raster, k2
H -

raster, and k2-acc obtain very close results. k2-acc obtains the best time for some
datasets containing a small number of different values, more specifically, for datasets
from collection eua, and some from collection cat0. However k2-raster, and k2

H -raster
are able to answer this query efficiently over datasets with a large number of different
values or a large size. k3-tree runs up to 40 times slower. This is the unique query where
the standard k2-raster is faster than k2

H -raster in some case.
In the case of strong checkValuesInWindow, k2

H -raster, k2-raster and k2-acc obtain
similar results, while k3-tree behaves constantly worse. Our structures use the informa-
tion on the nodes (the maximum and minimum values) to check if the cells meet the
conditions of the query. They are generally able to answer a query in the upper levels of
the tree, without the need to descend to the last levels. This is the reason why k2-raster
obtains very similar results to those of k2

H -raster for most of the datasets, as they only
differ in the last levels of representation, which is rarely accessed in this query.

5.4. Comparison with netCDF

In this section we present a brief comparison of the heuristic k2-raster (k2
H -raster)

with netCDF, using only datasets cat0 and cat3. This experiment is intended to give
an idea of the differences between a classic compression approach and a compact data
structure.

39

 0.1

 1

 10

 100

227 903 3606 14415 57586 114966

T
im

e
(µ

s)
 (

lo
g

sc
al

e)

Number of different values

k2-acc
k3-tree

k2-raster
k2

H-raster

(a) MDTx – weak checkV aluesInWindow

 0.1

 1

 10

 100

 1000

227 903 3606 14415 57586 114966

T
im

e
(µ

s)
 (

lo
g

sc
al

e)

Number of different values

k2-acc
k3-tree

k2--raster
k2

H-raster

(b) MDTx– strong checkV aluesInWindow

 1

 10

 100

 1000

3600x3600 7200x7200 10800x10800 14400x14400

T
im

e
(µ

s)
 (

lo
g

sc
al

e)

Raster Size

k2-acc
k3-tree

k2--raster
k2

H-raster

(c) eua – weak checkV aluesInWindow

 0.1

 1

 10

 100

 1000

3600x3600 7200x7200 10800x10800 14400x14400

T
im

e
(µ

s)
 (

lo
g

sc
al

e)

Raster size

k2-acc
k3-tree

k2-raster
k2

H-raster

(d) eua – strong checkV aluesInWindow

 1

 10

 100

4100x5849 8242x11737 12403x17643 16564x23564

T
im

e
(µ

s)
 (

lo
g

sc
al

e)

Raster Size

k2-acc
k3-tree

k2--raster
k2

H-raster

(e) cat0 – weak checkV aluesInWindow

 0.1

 1

 10

 100

 1000

4100x5849 8242x11737 12403x17643 16564x23564

T
im

e
(µ

s)
 (

lo
g

sc
al

e)

Raster size

k2-acc
k3-tree

k2--raster
k2

H-raster

(f) cat0 – strong checkV aluesInWindow

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 6

 6.5

 7

4100x5849 8242x11737 12403x17643 16564x23564

T
im

e
(µ

s)

Raster Size

k2--raster
k2

H-raster

(g) cat3 – weak checkV aluesInWindow

 0.52

 0.54

 0.56

 0.58

 0.6

 0.62

 0.64

4100x5849 8242x11737 12403x17643 16564x23564

T
im

e
(µ

s)

Raster size

k2--raster
k2

H-raster

(h) cat3 – strong checkV aluesInWindow

Figure 12: Time results for weak (left) and strong (right) checkV aluesInWindow. Time results are
measured in microseconds per query.

40

 0

 20

 40

 60

 80

 100

4100x5849 8242x11737 12403x17643 16564x23564

C
om

pr
es

si
on

 (
%

)

Raster size

NetCDFnc
NetCDF1
NetCDF9
k2

H-raster

(a) cat0

 0

 20

 40

 60

 80

 100

4100x5849 8242x11737 12403x17643 16564x23564

C
om

pr
es

si
on

 (
%

)

Raster size

NetCDFnc
NetCDF1
NetCDF9
k2

H-raster

(b) cat3

Figure 13: Compression percentage of k2H -raster and netCDF.

To compress, netCDF uses Deflate, which can be configured in ten compression levels.
Level 0 means no compression, and thus faster access times, whereas level 9 obtains the
best compression at the cost of slower access times. In any case, to obtain a given
datum, Deflate must start the decompression at the beginning of stream of data, which
is precisely the situation that compact data structures avoid.

This comparison is a bit difficult to address, since the two techniques were designed
with completely different approaches. k2

H -raster was specifically designed to take advan-
tage of the speed of the upper levels of the memory hierarchy, whereas netCDF follows
a classic disk-based approach. Therefore, the comparison could be somewhat unfair. In
order to try to be as fair as possible, we consider only user times, which do not include
the times to access disk, therefore the effect is as the netCDF read the data from main
memory.

5.4.1. Compression

Figure 13 shows the compression percentage obtained by k2
H -raster and netCDF

with different levels of compression, namely: using no compression, level 1, and level 9
(denoted NetCDFnc, NetCDF1, and NetCDF9 respectively). We can observe that in the
most compressible file cat0, k2

H -raster is basically on a par with netCDF, more precisely,
it obtains ratios similar to those obtained by netCDF between levels 1 and 3 of Deflate.
When compressing cat3, k2

H -raster is a bit worse than netCDF. While netCDF obtains
compression ratios around 41–42%, k2

H -raster obtains compression ratios close to 48%.
Thus, k2

H -raster achieves compression ratios comparable to those obtained by netCDF,
being just around 10–15% worse than the netCDF configured with the maximum level of
compression. However, we will see in the following section that k2

H -raster obtains query
times that are orders of magnitude better in some cases.

5.4.2. Query times

Figure 14 shows time results for performing different queries over the two datasets,
using both k2

H -raster and netCDF. It is noticeable that k2
H -raster obtains better re-

sults for almost all the queries, even when compared with the netCDF variant using no
compression, which requires much more space.

41

 0.1

 1

 10

 100

 1000

 10000

4100x5849 8242x11737 12403x17643 16564x23564

T
im

e
(µ

s)
 (

lo
g

sc
al

e)

Raster size

NetCDFnc
NetCDF1
NetCDF9
k2

H-raster

(a) cat0 – getCell

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

4100x5849 8242x11737 12403x17643 16564x23564

T
im

e
(µ

s)
 (

lo
g

sc
al

e)

Raster size

NetCDFnc
NetCDF1
NetCDF9
k2

H-raster

(b) cat3 – getCell

 0

 50

 100

 150

 200

 250

 300

4100x5849 8242x11737 12403x17643 16564x23564

T
im

e
(n

s)

Raster size

NetCDFnc
NetCDF1
NetCDF9
k2

H-raster

(c) cat0 – getWindow

 0

 50

 100

 150

 200

 250

 300

4100x5849 8242x11737 12403x17643 16564x23564

T
im

e
(n

s)

Raster size

NetCDFnc
NetCDF1
NetCDF9
k2

H-raster

(d) cat3 – getWindow

 1

 10

 100

 1000

 10000

4100x5849 8242x11737 12403x17643 16564x23564

T
im

e
(n

s)
 (

lo
g

sc
al

e)

Raster size

NetCDFnc
NetCDF1
NetCDF9
k2

H-raster

(e) cat0 – searchValuesInWindow

 1000

 10000

 100000

 1e+06

 1e+07

4100x5849 8242x11737 12403x17643 16564x23564

T
im

e
(n

s)
 (

lo
g

sc
al

e)

Raster size

NetCDFnc
NetCDF1
NetCDF9
k2

H-raster

(f) cat3 – searchValuesInWindow

 0.01

 0.1

 1

 10

 100

4100x5849 8242x11737 12403x17643 16564x23564

T
im

e
(m

s)
 (

lo
g

sc
al

e)

Raster Size

NetCDFnc
NetCDF1
NetCDF9
k2

H-raster

(g) cat0 – weak checkV aluesInWindow

 0.01

 0.1

 1

 10

 100

4100x5849 8242x11737 12403x17643 16564x23564

T
im

e
(m

s)
 (

lo
g

sc
al

e)

Raster Size

NetCDFnc
NetCDF1
NetCDF9
k2

H-raster

(h) cat3 – weak checkV aluesInWindow

Figure 14: Query time results of the comparison of k2H -raster with netCDF.

42

In getCell, k2
H -raster is between 30 and 67 times faster than the uncompressed version

of netCDF. The reason of this surprising result is the compact data structure approach.
Given that obtaining just a cell is so fast that it could not be measured with the time

linux system call, we have to perform 1,000,000 queries. This also gives a good average
value for the getCell query on a k2

H -raster, since the time for obtaining cells can vary
significantly depending on the level where the downward traversal that solves the query
stops. Observe that when retrieving a cell that is within a uniform submatrix (all the
cells of the submatrix have the same value), the query can stop potentially in a level
quite close to the root, thus requiring a short and fast traversal.

After solving several queries (of the 1,000,000 queries that are executed during the
experiment), it is likely that the algorithms controlling the CPU caches keep, at least, the
upper levels of the k2

H -raster, since all searches start at the root of the tree. However,
netCDF retrieves one disk page per cell request. Given that queries are random, and
in netCDF the cells of the raster are placed sequentially in an array, each cell query
may require a different disk page. Moreover, after returning from a system call that
retrieves a disk page containing the searched cell, the retrieved data is in RAM, which is
significantly slower than in the case of CPU cache accesses. Observe that this is not an
unfair situation for netCDF. Compact data structures require a complex design in order
to keep the data always compressed, precisely to make a better usage of the memory
hierarchy by placing the data as close to the CPU as possible.

Moreover, the comparison of k2
H -raster with the compressed versions of netCDF

shows overwhelming results, as k2
H -raster is between 3 and 4 orders of magnitude faster.

This is due to the fact that netCDF requires a decompression from the beginning of the
file; thus, the portion of compressed data preceding the requested cell must be loaded
into memory and decompressed.

In the case of getWindow, k2
H -raster and the uncompressed netCDF are basically on

a par. For small files, netCDF obtains slightly better times, whereas for bigger files, it
is the opposite situation. Contrary to what happened when solving getCell, getWindow
outputs several values of cells that are contiguous in the raster matrix; thus, the un-
compressed version of netCDF outperforms k2

H -raster in some cases, as these contiguous
values are trivially obtained after few disk accesses in the case of netCDF, but require
a more complex navigation in the case of k2

H -raster. This behavior is also noticeable
when using netCDF with compression, as it takes advantage of the spatial locality when
accessing the compressed file. In any case, k2

H -raster is still around 8 times faster than
these compressed representations.

For searchValuesInWindow and checkValuesInWindow, k2
H -raster is orders of mag-

nitude faster than netCDF, thanks to its indexing capabilities.

6. Conclusions

In this article we propose a new storage structure, denoted k2-raster, which represents
raster data in compressed form and offers efficient indexing capabilities. Our technique
supports, within reduced space, fast retrieval of single cell values, decompression of re-
gions of cells and also supports advanced searches, such as retrieving cells inside a region

43

containing some specific value or checking the existence of values inside regions of the
raster data. We have also presented a variant of the structure, called k2

H -raster, which
uses an entropy-based heuristic to create a vocabulary of common patterns in order to
obtain further compression.

We have empirically compared our two variants to existing techniques from the lit-
erature, showing that both proposals clearly outperform other compact data structures
also designed for representing and indexing raster datasets. They not only obtain better
space usage and query performance, but they also scale better when increasing the size of
the input data or when the raster matrix contains a large number of different values. The
scalability property is of extreme importance, as these characteristics appear when using
real raster data. When comparing the two proposed variants, k2

H -raster is the clear
choice in all scenarios. The simpler proposal, k2-raster, obtains better construction
times, but the heuristic version obtains better spatio-temporal results.

We also showed that compared with netCDF, a classical method to store rasters,
k2
H -raster obtains comparable, or at least close, compression ratios. In addition, thanks

to the ability to access a given datum without decompressing the rest of the data and
the indexing capabilities, k2

H -raster obtains much better access and query times, being
in some cases orders of magnitude faster.

As future work, we will extend the proposed structure to other dimensions, for in-
stance, to be used for spatio-temporal or 3-D datasets. In addition, we will also study
the adaptation of our data structure to distributed or dynamic environments, and also
its applicability for storing and querying very large raster matrices on external storage.

Acknowledgments

This work was supported by Ministerio de Economı́a y Competitividad (PGE and
FEDER) under grants [TIN2016-78011-C4-1-R; TIN2016-77158-C4-3-R; TIN2013-46238-
C4-3-R; TIN2013-46801-C4-3-R], Centro para el desarrollo Tecnológico e Industrial Pro-
grama CIEN 2014 (co-founded with FEDER) [IDI-20141259; ITC-20151247]; Xunta de
Galicia (co-founded with FEDER) under grant GRC2013/053.

References

[1] S. Ladra, J. R. Paramá, F. Silva-Coira, Compact and queryable representation of raster datasets,
in: Proceedings of the International Conference on Scientific and Statistical Database Management
(SSDBM), 2016, pp. 15:1–15:12. doi:10.1145/2949689.2949710.

[2] H. Couclelis, People manipulate objects (but cultivate fields): Beyond the raster-vector debate in
GIS, in: Proceedings of GIS: from space to territory - theories and methods of spatio-temporal
reasoning, 1992, pp. 65–77. doi:10.1007/3-540-55966-3 3.

[3] M. Worboys, M. Duckham, GIS: A computing perspective, CRC press, 2004.
[4] P. A. Longley, M. F. Goodchild, D. J. Maguire, D. W. Rhind, Geographic Information Systems and

Science, Wiley, 2005.
[5] Y. Li, T. R. Bretschneider, Semantic-Sensitive Satellite Image Retrieval, IEEE Trans. on Geosci.

and Remote Sens. 45 (2007) 853–860. doi:10.1109/TGRS.2007.892008.
[6] M. Quartulli, I. G. Olaizola, A review of EO image information mining, ISPRS J. Photogramm.

Remote Sens 75 (2013) 11–28. doi:10.1016/j.isprsjprs.2012.09.010.
[7] G. K. Wallace, The JPEG still picture compression standard, Commun. ACM 34 (1991) 30–44.

doi:10.1145/103085.103089.
[8] P. Lindstrom, M. Isenburg, Fast and Efficient Compression of Floating-Point Data, IEEE Trans.

Vis. Comput. Graph. 12 (2006) 1245–1250. doi:10.1109/TVCG.2006.143.

44

[9] C. Lee, M. Yang, R. Aydt, Netcdf-4 performance report, Tech. rep., Technical report, HDF Group
(2008).

[10] G. Jacobson, Succinct static data structures, Ph.D. thesis, Carnegie-Mellon (1988).
[11] G. Navarro, Compact Data Structures – A practical approach, Cambridge University Press, 2016.
[12] M. Burtscher, P. Ratanaworabhan, FPC: A High-Speed Compressor for Double-Precision Floating-

Point Data, IEEE Trans. Comput. 58 (2009) 18–31. doi:10.1109/TC.2008.131.
[13] J. Zhang, S. You, L. Gruenwald, Quadtree-based lightweight data compression for large-scale

geospatial rasters on multi-core CPUs, in: Proceedings of the IEEE International Conference on
Big Data (IEEE Big Data), 2015, pp. 478–484. doi:10.1109/BigData.2015.7363789.

[14] G. Navarro, V. Mäkinen, Compressed full-text indexes, ACM Comput. Surv. 39 (2007) 2.
doi:10.1145/1216370.1216372.

[15] R. Raman, S. S. Rao, Succinct Representations of Ordinal Trees, in: Proceedings of the
Space-Efficient Data Structures, Streams, and Algorithms, LNCS 8066, 2013, pp. 319–332.
doi:10.1007/978-3-642-40273-9 20.

[16] P. Howard, J. Vitter, Fast and efficient lossless image compression, in: Proceedings of the Data
Compression Conference (DCC), 2014, pp. 351–360. doi:10.1109/DCC.1993.253114.

[17] E. R. Schendel, Y. Jin, N. Shah, J. Chen, C. Chang, S.-H. Ku, S. Ethier, S. Klasky, R. Latham,
R. Ross, N. F. Samatova, ISOBAR Preconditioner for Effective and High-throughput Lossless Data
Compression, in: Proceedings of the IEEE International Conference on Data Engineering (ICDE),
2012, pp. 138–149. doi:10.1109/ICDE.2012.114.

[18] H. Samet, The Quadtree and Related Hierarchical Data Structures, ACM Comput. Surv. 16 (1984)
187–260. doi:10.1145/356924.356930.

[19] B. Duvenhage, Using an implicit min/max KD-tree for doing efficient terrain line of sight calcu-
lations, in: Proceedings of the International Conference on Computer Graphics, Virtual Reality,
Visualisation and Interaction in Africa (AFRIGRAPH), Vol. 1, New York, New York, USA, 2009,
p. 81. doi:10.1145/1503454.1503469.

[20] J. Zhang, S. You, Supporting Web-Based Visual Exploration of Large-Scale Raster Geospatial Data
Using Binned Min-Max Quadtree, in: Proceedings of the International Conference on Scientific and
Statistical Database Management (SSDBM), 2010, pp. 379–396. doi:10.1007/978-3-642-13818-8 27.

[21] A. Klinger, Pattern and search statistics, Academic Press, 1971. doi:10.1016/B978-0-12-604550-
5.50019-5.

[22] A. Klinger, C. R. Dyer, Experiments on picture representation using regular decomposition, Com-
put. Graph. Image Process. 5 (1976) 68–105. doi:10.1016/S0146-664X(76)80006-8.

[23] G. de Bernardo, S. Álvarez-Garćıa, N. R. Brisaboa, G. Navarro, O. Pedreira, Compact Querieable
Representations of Raster Data, in: Proceedings of the International Symposium on String Pro-
cessing and Information Retrieval (SPIRE), 2013, pp. 96–108. doi:10.1007/978-3-319-02432-5 14.

[24] N. R. Brisaboa, S. Ladra, G. Navarro, Compact representation of Web graphs with extended func-
tionality, Inf. Syst. 39 (2014) 152–174. doi:10.1016/j.is.2013.08.003.

[25] R. Rew, G. Davis, Netcdf: an interface for scientific data access, IEEE Computer Graphics and
Applications 10 (4) (1990) 76–82. doi:10.1109/38.56302.

[26] L. P. Deutsch, RFC 1951: DEFLATE compressed data format specification version 1.3 (May 1996).
[27] H. Samet, Foundations of Multimensional and Metric Data Structures, Morgan Kaufmann, 2006.
[28] H. Samet, Data structures for quadtree approximation and compression, Commun. the ACM 28

(1985) 973–993. doi:10.1145/4284.4290.
[29] M. a. Oliver, Operations on Quadtree Encoded Images, Comput. J. 26 (1983) 83–91.

doi:10.1093/comjnl/26.1.83.
[30] M. Seidemann, B. Seeger, ChronicleDB: A high-performance event store, in: Proceedings of the

20th International Conference on Extending Database Technology (EDBT), 2017, pp. 144–155.
[31] G. Moerkotte, Small Materialized Aggregates: A light weight index structure for data warehousing,

in: Proceedings of the 24rd International Conference on Very Large Data Bases (VLDB), 1998, pp.
476–487.

[32] M. Athanassoulis, A. Ailamaki, BF-tree: Approximate tree indexing, Proceedings of the VLDB
Endowment 7 (14) (2014) 1881–1892. doi:10.14778/2733085.2733094.

[33] P. Francisco, IBM PureData System for Analytics Architecture: A Platform for High Performance
Data Warehousing and Analytics, IBM Redbooks.

[34] The PostgreSQL Global Development Group, BRIN indexes, PostgreSQL 9.5.7 Documentation.
Chapter 62.

[35] R. Weiss, A technical overview of the oracle exadata database machine and exadata storage server,

45

Tech. rep., Oracle Corporation (2012).
[36] J. R. Woodwark, Compressed Quad Trees, Comput. J. 27 (1984) 225–229.

doi:10.1093/comjnl/27.3.225.
[37] T.-W. Lin, Compressed quadtree representations for storing similar images, Image Vis. Comput. 15

(1997) 833–843. doi:10.1016/S0262-8856(97)00031-0.
[38] Y.-K. Chan, Block image retrieval based on a compressed linear quadtree, Image Vis. Comput. 22

(2004) 391–397. doi:10.1016/j.imavis.2003.12.003.
[39] K.-L. Chung, Y.-W. Liu, W.-M. Yan, A hybrid gray image representation using spatial- and DCT-

based approach with application to moment computation, J. Vis. Commun. Image Represent. 17
(2006) 1209–1226. doi:10.1016/j.jvcir.2006.01.002.

[40] J. Zhang, S. You, High-performance quadtree constructions on large-scale geospatial
rasters using GPGPU parallel primitives, Int.l J. Geogr. Inf. Sci. 27 (2013) 2207–2226.
doi:10.1080/13658816.2013.828840.

[41] I. Gargantini, An effective way to represent quadtrees, Communications of the ACM 25 (12) (1982)
905–910.

[42] D. Abel, J. Smith, A data structure and algorithm based on a linear key for a rectangle
retrieval problem, Computer Vision, Graphics, and Image Processing 24 (1) (1983) 1 – 13.
doi:http://dx.doi.org/10.1016/0734-189X(83)90017-8.
URL http://www.sciencedirect.com/science/article/pii/0734189X83900178

[43] H. Samet, A. Rosenfeld, C. A. Shaffer, R. E. Webber, A geographic information system using
quadtrees, Pattern Recognition 17 (6) (1984) 647 – 656. doi:http://dx.doi.org/10.1016/0031-
3203(84)90018-9.
URL http://www.sciencedirect.com/science/article/pii/0031320384900189

[44] J. Zhang, S. You, L. Gruenwald, Indexing large-scale raster geospatial data using massively parallel
GPGPU computing, in: Proceedings of the International Conference on Advances in Geographic
Information Systems (SIGSPATIAL), 2010, p. 450. doi:10.1145/1869790.1869859.

[45] G. Jacobson, Space-efficient static trees and graphs, in: Proceedings of the Annual Symposium on
Foundations of Computer Science (FOCS), 1989, pp. 549–554. doi:10.1109/SFCS.1989.63533.

[46] P. Elias, Universal codeword sets and representations of the integers, IEEE Transactions on Infor-
mation Theory 21 (2) (1975) 194–203.

[47] S. W. Golomb, Run-length encodings, IEEE Trans. Inform. Theory IT-12 (1966) 399–401.
[48] H. E. Williams, Compressing Integers for Fast File Access, The Computer Journal 42 (3) (1999)

193–201. doi:10.1093/comjnl/42.3.193.
[49] V. Ngoc Anh, A. Moffat, Inverted index compression using word-aligned binary codes, Information

Retrieval 8 (1) (2005) 151–166.
[50] M. Zukowski, S. Héman, N. Nes, P. A. Boncz, Super-scalar RAM-CPU cache compression, in:

Proceedings of the International Conference on Data Engineering, (ICDE’06), IEEE Computer
Society, 2006, pp. 59–71.

[51] J. I. Munro, Tables, in: Proceedings of Foundations of Software Technology and Theoretical Com-
puter Science, Vol. 1180, 1996, pp. 37–42.

[52] D. Okanohara, K. Sadakane, Practical entropy-compressed rank/select dictionary, in: Proceedings
of the Workshop on Algorithm Engineering and Experiments, (ALENEX’07), 2007.

[53] R. Grossi, A. Gupta, J. S. Vitter, High-Order Entropy-Compressed Text Indexes, in: Proceedings
of the fourteenth annual ACM-SIAM symposium on Discrete algorithms, Vol. 2068 of SODA ’03,
2003, pp. 841–850.

[54] N. R. Brisaboa, A. Faria, S. Ladra, G. Navarro, Reorganizing compressed text, in: Proceedings of
the International ACM SIGIR Conference on Research and Development in Information Retrieval
(SIGIR’08), Singapore, 2008, pp. 139–146.

[55] J. Teuhola, Interpolative coding of integer sequences supporting log-time random access, Informa-
tion Processing Management 47 (5) (2011) 742–761.

[56] M. O. Külekci, Enhanced variable-length codes: Improved compression with efficient random access,
in: Proceedings Data Compression Conference, (DCC’14), Snowbird, UT, USA, 26-28 March, 2014,
2014, pp. 362–371.

[57] S. T. Klein, D. Shapira, Random access to fibonacci encoded files, Discrete Applied Mathematics
212 (2016) 115 – 128, stringology Algorithms.

[58] N. R. Brisaboa, S. Ladra, G. Navarro, DACs: Bringing direct access to variable-length codes, Inf.
Process. Manag. 49 (2013) 392–404. doi:10.1016/j.ipm.2012.08.003.

[59] D. Benoit, E. D. Demaine, J. I. Munro, R. Raman, V. Raman, S. S. Rao, Representing trees of
higher degree, Algorithmica 43 (4) (2005) 275–292.

46

[60] G. Navarro, K. Sadakane, Fully functional static and dynamic succinct trees, ACM Trans. Algo-
rithms 10 (3) (2014) 16:1–16:39.

[61] S. Álvarez-Garćıa, N. Brisaboa, J. D. Fernández, M. A. Mart́ınez-Prieto, G. Navarro, Com-
pressed vertical partitioning for efficient RDF management, Knowl. Inf. Syst. 44 (2015) 439–474.
doi:10.1007/s10115-014-0770-y.

[62] M. Romero, N. Brisaboa, M. A. Rodŕıguez, The SMO-index: a succinct moving object structure
for timestamp and interval queries, in: Proceedings of the International Conference on Advances in
Geographic Information Systems (SIGSPATIAL), 2012, p. 498. doi:10.1145/2424321.2424399.

[63] N. R. Brisaboa, A. Gómez-Brandón, G. Navarro, J. R. Paramá, GraCT: A Grammar Based Com-
pressed Representation of Trajectories, in: Proceedings of the International Symposium on String
Processing and Information Retrieval (SPIRE), 2016, pp. 218–230. doi:10.1007/978-3-319-46049-
9 21.

[64] S. Álvarez, N. R. Brisaboa, S. Ladra, Ó. Pedreira, A compact representation of graph databases,
in: Proceedings of the Eighth Workshop on Mining and Learning with Graphs (MLG), 2010, pp.
18–25. doi:10.1145/1830252.1830255.

[65] H. Garcia-Molina, J. D. Ullman, J. Widom, Database systems - the complete book (2. ed.), Pearson
Education, 2009.

[66] D. Salomon, Data Compression: The Complete Reference, Springer, 2004.
[67] C. E. Shannon, A mathematical theory of communication, Bell System Technical Journal 27 (1948)

370–423,623–656.
[68] R. J. Hijmans, S. E. Cameron, J. L. Parra, P. G. Jones, A. Jarvis, Very high resolution interpolated

climate surfaces for global land areas, Int. J. Climatol. 25 (2005) 1965–1978. doi:10.1002/joc.1276.
[69] R. González, S. Grabowski, V. Mäkinen, G. Navarro, Practical Implementation of Rank and Select

Queries, in: Poster Proceedings Volume of the Workshop on Efficient and Experimental Algorithms
(WEA), Vol. 0109, 2005, pp. 27–38.

47

