Check for
Updates

spl-js-engine: a JavaScript tool to implement
Software Product Lines

Alejandro Cortifnas”
Universidade da Corufa
Centro de Investigaciéon CITIC
Laboratorio de Bases de Datos
A Coruiia, Spain
alejandro.cortinas@udc.es

ABSTRACT

In 2015, our research laboratory started the definition and imple-
mentation of a Software Product Line (SPL) for the generation of
web-based Geographic Information Systems. Tooling support for
SPL was scarce, and we did not found any suitable alternative to
implement the mentioned product line. Therefore, we built spl-js-
engine, a JavaScript library that, following the annotative approach,
can generate final product source code from the annotated code,
the feature model of the product line, and a product specification.
spl-js-engine validates the specification of the product against the
feature model prior to the generation. Since its first implementation,
we have used this tool in many occasions both in the academia and
the industry contexts.

CCS CONCEPTS

« Software and its engineering — Software product lines.

KEYWORDS

Software product lines, tool, JavaScript

ACM Reference Format:

Alejandro Cortifias, Miguel R. Luaces, and Oscar Pedreira. 2022. spl-js-
engine: a JavaScript tool to implement Software Product Lines. In 26th ACM
International Systems and Software Product Line Conference - Volume B (SPLC
"22), September 12-16, 2022, Graz, Austria. ACM, New York, NY, USA, 4 pages.
https://doi.org/10.1145/3503229.3547035

1 INTRODUCTION

In this paper we present spl-js-engine, a tool for the implementation
of software product lines based on JavaScript. The motivation for
the development of this tool emerged from our own experience in
technology-transfer and industrial projects.

In the Databases Laboratory, we have been working since 2015
in the field of Software Product Lines (SPL), both from the academic
and the industrial perspectives. At that time we started two projects:
LPS-Bigger, a technology transfer project carried out with large

*All authors have contributed equally and the names are listed in alphabetical order

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

SPLC 22, September 12-16, 2022, Graz, Austria

© 2022 Association for Computing Machinery.

ACM ISBN 978-1-4503-9206-8/22/09...$15.00
https://doi.org/10.1145/3503229.3547035

Miguel R. Luaces”
Universidade da Corufia
Centro de Investigaciéon CITIC
Laboratorio de Bases de Datos
A Coruiia, Spain
luaces@udc.es

Oscar Pedreira*
Universidade da Corufia
Centro de Investigaciéon CITIC
Laboratorio de Bases de Datos
A Coruiia, Spain
oscar.pedreira@udc.es

companies in Spain that included, among other things, developing
a SPL able to generate products with functionalities related to Big
Data; and GISBuilder, a research project to design and develop a SPL
to generate web-based Geographic Information Systems (GIS) [3, 4].
The development of these two projects presented some constraints
regarding the approach to follow, briefly described next:

e Source code is multi-language, like all current web devel-
opment. Specifically, our technological stack includes Java,
JavaScript, HTML, CSS, property files, yaml, SQL, and XML.

o The variability of these projects requires fine granularity
changes. For example, we need to annotate Java Spring an-
notations, or the number of attributes of an element in a
HTML template.

o Each product of GISBuilder has its own data model. To han-
dle this, the tool should support model transformation to
generate source code based on the specification of the data
model of a product.

o The source code of the generated products needs to be inde-
pendent of the platform; this is, it should be possible for a
development team to continue developing features on top
of the generated products using standard tools. This leads
to another requirement: the code needs to be as readable as

possible.

When we started the development of these SPLs, we evaluated
many tools, which included: (i) Compositional-based tools: AHEAD,
FeatureHouse, XAK. (ii) Annotative-based tools: Antenna, Munge,
CPP, GPP, Feature]JS, CIDE. (iii) Other techniques: Aspect], Delta].
From this set, only the general preprocessors such as GPP could be
applied to our context, but their usage is not exempt of complexity,
specially handling model transformations. Therefore, we decided
to develop our own tool, following the annotative approach, which
supports the configuration and assemble of any source-code text-
file, independently of its language. spl-js-engine is implemented and
based in JavaScript, so the annotations in the source-code files of
the core components are written in this language, which has the
advantage of flattening the learning curve for any web developer.
Finally, we have created several types of annotations to allow inter-
polating data, that combined with the powerful JavaScript language
allow the implementation of model transformations.

In this short paper we present spl-js-engine, which is available
under the MIT license on GitHub!. Also, the tool is published in the

!Public repository of the tool (mirror of the private repository where its development
is managed): https://github.com/AlexCortinas/spl-js-engine

https://doi.org/10.1145/3503229.3547035
https://doi.org/10.1145/3503229.3547035
https://github.com/AlexCortinas/spl- js-engine
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3503229.3547035&domain=pdf&date_stamp=2022-09-12

SPLC 22, September 12-16, 2022, Graz, Austria

product.json —— | spl-js-engine ;E

A generated product
source code

. - feature-
config.json

model.xml

annotated code

Figure 1: spl-js-engine usage: input files

npm repository?, so anyone can easily install it locally, or integrate
it with any Node]JS project.

The article is organized as follows: Section 2 shows how the tool
is used, describes the features of the tool, and classifies it according
to [7]; we evaluate the tool in Section 3 through the list of projects
in which it has been used, trying to give an idea of its importance
for us over the years; finally, we end with some conclusions and
future work in Section 4.

2 FEATURES OF SPL-JS-ENGINE

In this section, we first explain the usage of the tool and the types
of annotations supported, so the reader can get a clear idea of how
it works. Then we describe the general features of the tool.

2.1 Usage

The tool can be used both as a terminal tool and integrated as a
library in any Node]JS application. In order to implement a SPL with
the tool, a series of files are required, shown in Figure 1: the SPL
feature model, which can be in the FeatureIDE XML format, or in
the tool’s own JSON format; a directory with the annotated source
code of the components of the SPL; and a configuration file in
JSON format that we will explain below. Using the tool to generate
a product requires a last file, shown with yellow background in
Figure 1, the specification of the product in JSON format. This last
file is the only one that varies to generate different products within
the same SPL.

The aforementioned configuration file has two functions. On the
one hand, the developer of the SPL defines which are the delimiters
that will be used in the annotations. Each file extension? can have
its own delimiters. That is, the delimiters /* and */ can be set for
Java or JavaScript code, while setting <!-- and --> delimiters for
XML files. Thanks to this configuration, we can use delimiters that
correspond to the language comments, if the language supports
comments?. In this way, IDEs will continue to be able to interpret
these files correctly in most cases to facilitate the development of
annotated code.

After installing the tool via npm®, the tool can be run with the
command spl-js-engine, as shown in Listing 1. The input files are
set via parameters, together with the path where the new product

Zspl-js-engine npm page: https://www.npmjs.com/package/spl-js-engine

31f the file does not have an extension, the name can be indicated directly (e.g., a
Docker container definition file, Dockerfile).

“There are languages like JSON that do not support comments, and in this case the
annotations will “break” the proper format of the file.

Snpm comes bundled with Node]S, which can be downloaded from https://nodejs.org/

Alejandro Cortinas, Miguel R. Luaces, and Oscar Pedreira

should be generated. The generation of the product’s source code is
immediate on any modern computer. If the product feature selection
does not comply to the feature model, an error is displayed and the
build stops. This happens, for example, if there are no sub-features
selected for an alternate feature.

spl-js-engine --featureModel model.xml --product product.json
--config config.json --code code --output outputFolder

Listing 1: Running the cli tool

More information and a complete example can be seen in the
documentation of the GitHub repository of spl-js-engine, including
a descriptive video showing how to use the tool and the main

features®.

2.2 Annotations

The tool supports three types of annotations. The basic annotation,
identified by the delimiters set in the configuration file of the SPL,
is used to indicate whether or not a piece of code is included in
the source code of the product. An example in Java language can
be seen in Listing 2, referencing features add, divide, multiply,
and subtract. Features are accessed through the JavaScript object
feature, so the annotations are pretty easy to understand. It is
important to note that the annotations are removed from the final
source code, regardless of whether the feature has been selected or
not. This allows the final product to be independent of the product
line, and its development can be continued by an external team.
public float calculate(float first, float second, Operation op) {
switch (op) {
/*% if (feature.add) { %/
case ADD:
return add(first, second);
/%% } if (feature.divide) { %*/
case DIVIDE:
return divide(first, second);
/%% } if (feature.multiply) { %x/
case MULTIPLY:
return multiply(first, second);
/*% } if (feature.subtract) { %x/
case SUBTRACT:
return subtract(first, second);
/%% Y %/
}

return 0;

Listing 2: Example of basic annotations

The interpolation annotation allows to include specific values
from the specification in the product source code. The interpola-
tion syntax is JavaScript, so the developer can use any JavaScript
function or expression. Listing 3 shows how the Maven group and
artifact values are set from the specification. This annotation type
uses the basic annotation delimiters appending an equals symbol
(=) symbol after the first delimiter. The data in the specification
is accessed through the JavaScript object data, and it can be as
complex as required (e.g., we have used this annotation to define a
complete data model, with its entities, properties and relationships,
and generate source code that performs CRUD operations on the
data model).

®GibHub repository wiki: https://github.com/AlexCortinas/spl-js-engine/wiki

https://www.npmjs.com/package/spl-js-engine
https://nodejs.org/
https://github.com/AlexCortinas/spl-js-engine/wiki

spl-js-engine: a JavaScript tool to implement SPLs

<?xml version="1.0" encoding="UTF-8"7>
<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<modelVersion>4.0.0</modelVersion>

<groupId><!--%= data.maven.group %--></groupId>
<artifactId><!--%= data.maven.artifact %--></artifactId>

</project>
Listing 3: Example of interpolation annotations

There is one more type of annotation that allows generating
new files based on the data of the product specification. These
annotations are quite complex to use, intended for cases where
the code template needs to be instantiated a number of times. For
example, if we have a template to define a Java class, and we need
to create ten Java classes for a specific product.

A possible product specification that can be used with the anno-
tations shown in this section is shown in Listing 4.

{
"features": ["add", "multiply"],
"data": {
"maven": {
"group": "es.udc.lbd",
"artifact": "web-calculator"

Listing 4: Example of product specification

2.3 Capabilities

spl-js-engineis a tool built in JavaScript to implement SPLs following
an annotative approach. As mentioned in this section, it support
three types of annotations, written in JavaScript language. Some of
its most significant features are listed below:

e Can be run in any operating system with NodeJS.

e Can be used as a library within any JavaScript project.

e Can be run directly in a web browser. Input and output
files can be files and folders from the local file-system, or
compressed files stored in memory.

e It allows to programmatically define a feature model. The
supported feature model is basic, with cross-tree constraints,
validating the product before generating it to check that
the feature selection is correct. Since it does not provide a
graphical UI to design the feature model, it supports the XML
format from the well-known tool FeatureIDE’.

o Its development follows the test driven development (TDD)
methodology®.

spl-js-engine was made public at the end of 2016 on GitHub
under the MIT license, and has been part of the npm repository
since September 25, 2018. Since then it has been downloaded 2 196
times® (though probably many of those downloads are installations
made by ourselves during the years).

7FeatureIDE website: https://www.featureide.de

8116 test cases on July 10th, 2022

“npm-stats for spl-js-engine: https://npm-stat.com/charts.html?package=spl-js-
engine&from=2018-09-01, checked on July 10th, 2022

SPLC 22, September 12-16, 2022, Graz, Austria

Next we list the characteristics of the tool according to the classi-
fication of [7]. Regarding Domain Analysis characteristics, the tool
only supports basic features and constraints. Regarding Require-
ment Analysis characteristics, we have some statistics and metrics
functionalities such as counting the number of features, the number
of annotations, the number of annotated files, the list of files in
which an annotation appears, etc. However, we have not thought
about these features exhaustively, so support is partial at best. spl-
Jjs-engine also validates the product specification against the feature
model of the product line, although the validation of complex cross-
tree constraints with binary operations is still under development
(see Section 4). The tool does have propagation of constraints when
selecting the features for a product. Regarding Domain Implementa-
tion characteristics, our tool follows an annotation-based approach,
with low abstraction level, and supports multi-language artifacts, as
mentioned already. Regarding the Product Derivation characteristics,
we effectively generate products. The tool itself does not validate
the generated products (beyond validating the feature selection)
since no test is run after the generation. This is something we nor-
mally want to do in the application that the tool is embedded into.
Regarding the traceability of the features, there is a functionality to
see in which files a certain feature is located, and vice versa, but we
have not delved further. Finally, the tool does not handle evolution
changes (we are using an evolution flow supported by git and a
GitLab community server, similar to [8]).

3 EVALUATION

This section enumerates all the projects where the tool has been
used over the years.

3.1 Research publications and R&D projects

There are several publications related to the SPL for web-based
GIS, including [3, 4] and the thesis of Alejandro Cortifias [1]. We
also have explored runtime product preview, this is, showing proto-
types of the web interface of the products directly within the web
application that serves to specify and generate the products [2].
Our SPL for the creation of web applications in the field of Digi-
tal Libraries has also been published [9, 10]. spl-js-engine was also
used in a collaborative work combining compositive and annotative
approaches [5, 6].

Regarding R&D projects, spl-js-engine was used in LPS-Bigger,
already mentioned in the introduction, and in GEMA. LPS-Bigger
was a large research project carried out in collaboration with large
IT companies in Spain. The goal of the project was to develop a SPL
able to generate applications with a set of features related with big
data management, ingestion, and processing. GEMA was a large
research project with a work package that aimed at developing a
SPL for Mobile Workforce Management, which is a sub-type of GIS.

3.2 Technology transfer projects

We have used the product lines built with spl-js-engine in several
technology transfer projects. In this section, we briefly describe
some of them and we provide some metrics to evaluate their com-
plexity.

LEMSI is an e-learning platform. We have used our SPL as an
scaffolding tool to create the first version of the application (data

https://www.featureide.de
https://npm-stat.com/charts.html?package=spl-js-engine&from=2018-09-01
https://npm-stat.com/charts.html?package=spl-js-engine&from=2018-09-01

SPLC 22, September 12-16, 2022, Graz, Austria

LOC Generated LOC Removed LOC

LEMSI 191 844 117 326 85810
Besteiro 43242 34455 250
WebEIEL 341446 323034 553

Table 1: Evaluation of the complexity of the projects

model and full-stack CRUD functionality). We have then used the
product source code as the starting point of the final application.

Besteiro is an e-commerce platform. We have used our SPL
again to scaffold the first version of the application, which was then
completed with other specific functionalities. After that, we have
updated the product using spl-js-engine to include in the product
bug fixes and changes in the functionality.

WeDbEIEL is a web-based GIS for publishing and visualizing
the information on infrastructures and facilities of the Provincial
Councial of A Coruna (Spain). It is currently implemented using
technology from 2005, and we are creating a new version of the
application with our SPL for web-based GIS, based on spl-js-engine.

Table 1 shows some metrics of the three applications that were
generated using spl-js-engine. The first column shows the lines
of code (LOC) of the final application. The second column shows
the LOC of the product generated by the SPL. The third column
shows the LOC that were removed from the generated source-code,
this is, lines that were generated but not required for the actual
products. We can see that in the final version of LEMSI, there are
only around 32k lines of generated code left, which represents the
16% of the code. This is an example of a project without GIS nature,
that used the product line only as an starter, and that anyway took
advantage of it since almost all the back-end source code is used
(the source code of the web user interface was rebuilt entirely by
our development team). Both Besteiro and WebEIEL are ongoing
projects, and therefore the LOC removed are still very low (less
than 1%). Regarding the LOC in the projects that come from the
SPL, it is a 79% in Besteiro, and a 94% in WebEIEL.

3.3 Bachelor/Master’s thesis

We have developed four prototypes of SPLs with our students:

Blog generation tool, a simple SPL to generate blog applications,
presented on September 18th, 2019. This student re-implemented
the example of [5], which was later used in [6].

A tool for the semi-automatic generation of software for Digi-
tal Libraries, which later evolved in the SPL for BIDI mentioned
above [9, 10], presented on September 21st, 2020.

Native application generation in the domain of Mobile Workforce
Management, presented on September 21st, 2020. This projects
consists on developing a SPL to generate Android applications that
implement a subset of the features of the GEMA project.

Software product line for native mobile applications in the field of
Mobile Workforce Management, presented on July 7th, 2021. This
project is similar to the previous one, but using Flutter instead of
native Android code.

4 CONCLUSIONS

In this short paper we have briefly introduced spl-js-engine, a tool
that we have been using for the last seven years to implement all

Alejandro Cortinas, Miguel R. Luaces, and Oscar Pedreira

the SPLs that we worked on. We have developed an annotative SPL
derivation engine that can be used in industry-level projects.

As future work, we are working in a few ideas. We will change
the way the analysis and validation of the feature models and the
feature selection of the products are done to use a SAT Solver.
Right now, we have implemented an ad-hoc solution using object
orientation with methods that validate each constraint and the
relationships between the features. We may also migrate the part
of the code related to feature models into an independent project.
In fact, the feature model creation, import, export, analysis and
validation functionalities are already encapsulated.

Secondly, we are working on synchronizing the web tool that is
used to generate products with our GitLab, so that the evolution of
the products using an approach based in source code versioning
(similar to [8]) becomes automatic.

Finally, the tool will soon enable modular product specifications.
The specification of one of our products is becoming too big when in
fact is composed by conceptually independent parts (map viewers,
static pages, SLD styles). Therefore, we are currently working on
allowing the specification to consist of not just a single file, but
several referenced files.

ACKNOWLEDGMENTS

Partly funded by: MCIN/AEI/10.13039/501100011033, NextGenera-

tionEU/PRTR, FLATCITY-POC: PDC2021-121239-C31; MCIN/AEI/

10.13039/501100011033 EXTRACompact: PID2020-114635RB-100;

GAIN/Xunta de Galicia/ERDF CEDCOVID: COV20/00604; Xunta

de Galicia/FEDER-UE GRC: ED431C 2021/53; MICIU/FEDER-UE

BIZDEVOPSGLOBAL: RTI-2018-098309-B-C32; MCIN/AEI/10.13039/
501100011033 MAGIST: PID2019-105221RB-C41.

REFERENCES

[1] Alejandro Cortifias. 2017. Software Product Line for web-based Geographic Infor-
mation Systems. Ph. D. Dissertation. Universidade da Coruia.

[2] A. Cortifias, Carlo Bernaschina, M. R. Luaces, and Piero Fraternali. 2017. Improv-
ing GISBuilder with Runtime Product Preview. In Procs. of 17th Int. Conf. on Web
Engineering (ICWE 2017) -LNCS 10360. Roma, 549-553.

[3] A. Cortinas, M. R. Luaces, O. Pedreira, and A. S. Places. 2017. Scaffolding and
in-browser generation of web-based GIS applications in a SPL tool. In Proc. 21st
Int. Systems & Software Product Line Conf. (SPLC 2017) Vol.2. 46—49.

[4] A. Cortifias, M. R. Luaces, O. Pedreira, A. S. Places, and J. Perez. 2017. Web-based
Geographic Information Systems SPLE: Domain Analysis and Experience Report.
In Proc. 21st Int. Systems & Software Product Line Conf. (SPLC 2017) Vol.1. 190-194.

[5] J. M. Horcas, A. Cortifias, L. Fuentes, and M. R. Luaces. 2018. Integrating the
Common Variability Language with Multilanguage Annotations for Web Engi-
neering. In Proc. 22st International Systems & Software Product Line Conference
(SPLC 2018) vol.1. Gothenburg, 196-207.

[6] J. M. Horcas, A. Cortifias, L. Fuentes, and M. R. Luaces. 2022. Combining multiple
granularity variability in a software product line approach for web engineering.
Information and Software Technology (2022).

[7] José Miguel Horcas, Ménica Pinto, and Lidia Fuentes. 2022. Empirical analysis

of the tool support for software product lines. Software and Systems Modeling

(2022). https://doi.org/10.1007/s10270-022-01011-2

Leticia Montalvillo and Oscar Diaz. 2015. Tuning GitHub for SPL development:

branching models & repository operations for product engineers. In Procs. of the

19th Int. Conf. on Software Product Line Pages - SPLC’15. ACM, 111-120.

[9] O.Pedreira, D. Ramos Vidal, A. Cortifias, M. R. Luaces, and A. S. Places. 2021. De-
velopment of Digital Libraries with Software Product Line Engineering. Journal
of Web Engineering (2021), 2017-2058.
[10] D.Ramos Vidal, A. Cortifas, M. R. Luaces, O. Pedreira, and A. S. Places. 2020. A
Software Product Line for Digital Libraries. In Proc of the 16th Int. Conf. on Web
Information Systems and Technologies (WEBIST 2020). Online, 321-334.

8

https://doi.org/10.1007/s10270-022-01011-2

	Abstract
	1 Introduction
	2 Features of spl-js-engine
	2.1 Usage
	2.2 Annotations
	2.3 Capabilities

	3 Evaluation
	3.1 Research publications and R&D projects
	3.2 Technology transfer projects
	3.3 Bachelor/Master's thesis

	4 Conclusions
	Acknowledgments
	References

