
Accessible Routes Integrating Data from Multiple Sources

Miguel R. Luaces1, Jesús A. Fisteus2, Luis Sánchez-Fernández2, Mario
Munoz-Organero2, Jesús Balado3, Lucía Díaz-Vilariño3, and Henrique Lorenzo3

1Universidade da Coruña, CITIC, Fac. Informática, Database Lab. Elviña, 15071
A Coruña, Spain; miguel.luaces@udc.es

2Department of Telematic Engineering, Universidad Carlos III de Madrid, 28911
Leganés, Spain; {jaf, luiss, munozm}@it.uc3m.es

3Universidade de Vigo, CINTECX, Dept. Natural Resources and Environmental
Engineering, School of Mining and Energy Engineering, Applied Geotechnologies
Research Group, Campus universitario de Vigo, As Lagoas, Marcosende, 36310

Vigo, Spain; {jbalado, lucia, hlorenzo}@uvigo.es

Luaces, M.R.; Fisteus, J.A.; Sánchez-Fernández, L.; Munoz-Organero, M.; Balado, J.; Díaz-Vilariño, L.; Lorenzo,
H. Accessible Routes Integrating Data from Multiple Sources. ISPRS Int. J. Geo-Inf. 2021, 10, 7.
https://doi.org/10.3390/ijgi10010007

Abstract

Providing citizens with the ability to move around in an accessible way is a requirement
for all cities today. However, modeling city infrastructures so that accessible routes can be
computed is a challenge because it involves collecting information from multiple, large-scale
and heterogeneous data sources. In this paper, we propose and validate the architecture
of an information system that creates an accessibility data model for cities by ingesting
data from different types of sources and provides an application that can be used by people
with different abilities to compute accessible routes. The article describes the processes that
allow building a network of pedestrian infrastructures from the OpenStreetMap information
(i.e., sidewalks and pedestrian crossings), improving the network with information extracted
obtained from mobile-sensed LiDAR data (i.e., ramps, steps, and pedestrian crossings),
detecting obstacles using volunteered information collected from the hardware sensors of the
mobile devices of the citizens (i.e., ramps and steps), and detecting accessibility problems
with software sensors in social networks (i.e., Twitter). The information system is validated
through its application in a case study in the city of Vigo (Spain).

Keywords: spatial data mining; geospatial NLP; geospatial data fusion; large scale geospatial
processing; pedestrian navigation; physical accessibility

1 Introduction
Accessibility is considered a general principle of the United Nations Convention on the Rights of
Persons with Disabilities, and State Parties undertake to promote the availability and use of new
technologies suitable for persons with disabilities. In particular, information and communications
technologies can be used to help people find their way through cities avoiding obstacles and
barriers to accessibility. Several research studies have already focused on facilitating navigation
for people with diverse abilities in Smart Cities. The study in Panta et al. (2019) presents a

1

https://doi.org/10.3390/ijgi10010007

systematic literature review of some of the technological components which are the building blocks
of smart accessibility and a comparison of existing technologies and case studies. The majority of
existing solutions provide a mobile app-based routing assistant for outdoor door-to-door journey
planning using partial sensed data (mainly single source based). However, a holistic approach
should combine software and hardware sensors to dynamically and seamlessly detect barriers
affecting people with diverse abilities so that barrier-less pathways may be offered to them.
Such an information system requires the integration of data coming from heterogeneous sources
such as geographic information, LiDAR point clouds, hardware sensors, social networks, and
user-volunteered information.

This paper focuses on filling some of the gaps previously identified for the development
of the underneath technology that will allow any smart city to create barrier-less mobility
assistants adapted to the specific limitations of each citizen. The technology developed allows
the construction of layers of information of urban elements affecting the user mobility in public
spaces by obtaining knowledge from open sources available on the Internet, from geomatic sensors
(such as LiDAR sensors) and by using techniques from crowd-sensed data from both hardware
and software sensors generated or captured by the users of the city themselves, particularly
those embedded in the mobile or wearable devices carried by the citizens (eg, accelerometers,
gyroscopes, barometers or light and sound sensors) or traces that people leave on the Internet
such as in social networks.

Figure 1 shows the general framework of this paper. The left side enumerates the data sources
considered in the paper. OpenStreetMap is used to retrieve geographic information regarding
points of interest (e.g., destinations, disabled parking spaces) and the sidewalk network. A
software component developed using Java allows the automation of the data capture process
using tasks defined using a JSON-based declarative language that combines harvesting tasks
and processing tasks defined in SQL. We describe the algorithm of a particular processing
task that builds the sidewalk network from the OpenStreetMap road network. LiDAR data
from selected locations of the city is captured using mobile LiDAR devices. The point clouds
collected are processed by a Python component that refines that sidewalk network previously
created (e.g., improving the pedestrian crosses) and detects obstacles on the sidewalks (i.e., ramps
and steps). The obstacles detected from LiDAR data are processed asynchronously because
the survey teams and the mobile LiDAR devices cannot be permanently deployed. However,
the user-volunteered information gathered using a mobile application developed in Java for
Android Devices is processed synchronously and in near real-time. The application collects
accessibility issues explicitly reported by users, and it uses the mobile sensors of the device
(i.e., gyroscope, magnetometer, accelerometer, and gravity sensor) to identify and report obstacles
using a convolutional neural network implemented using a Keras model. Finally, a Python
component uses the Twitter Streaming API to select relevant Tweets using keywords, and then
it uses information from the Tweet and natural language processing techniques to extract the
location of the Tweet and report an obstacle. All the information collected is represented in an
accessibility data model that describes the pedestrian network, the destinations, the disabled
parking spaces, and the accessibility barriers that affect the network. Finally, a progressive web
application developed using Vue.js and a Java backend allows the user to compute an accessible
route including possible obstacles.

The first contribution of this paper is the architecture of an information system to store
and analyse the information in a spatio-temporal database that integrates all the above sources
of sensed data to obtain an inventory of elements in the urban environment and accessible to
citizens with disabilities. The second contribution of the paper are specific algorithms to build
a pedestrian network from open data sources and improve the network using LiDAR sensors,
to find accessibility barriers both asynchronously (using LiDAR data and a geomatic approach)

2

Accesibility Data Model

OpenStreetMap
Data

LiDAR
Data

User-volunteered
information

Twitter
Streaming

API

Build a sidewalk
network

Harvest points of
interest

Refine the sidewalks

Find obstacles
(asynchronously)

Find obstacles
(synchronously)

Find mobility barriers

Smart City User

Accesibility App

NetworkAccessibility Barrier

Destination Disabled Parking

affects

includesis located in

destination
route obstacles

Figure 1: General framework of this paper.

and synchronously (using user-volunteered data from mobile sensors and a machine learning
approach), and to find user-reported obstacles using Twitter data and natural language processing.
The third contribution is the description of a data model and a mobile application that can be
used to compute to obtain personalized routes to move across the smart city considering the
limited mobility constraints of each individual (the blind, people moving in wheelchairs, people
with respiratory limitations, etc.).

This paper is organized as follows—Section 2 is dedicated to present related work. The system
architecture is fully presented in Section 3. Section 4 describes the details of the implementation.
A case study of the application of our system is described in Section 5. Section 6 is dedicated to
gathering the major conclusions of this research paper.

2 Related Work
Recent trends in information and communications technologies have resulted in many different
data acquisition technologies and data sources that can provide valuable information to an infor-
mation system that computes an accessible route in a Smart City. User-volunteered geographic
information can provide the foundation of the system, whereas LiDAR sensors and sensors in
mobile devices can provide detailed information for the outdoor-indoor frontier. Furthermore,
social networks provide a valuable source to gather real-time information regarding accessibility
barriers. This section describes related work regarding these data sources.

Collecting data on street-level accessibility is a very complex task. Even tough there are
many projects that aim at collecting sidewalk accessibility data Saha et al. (2019); Ding et al.
(2014), the current coverage of these tools is limited. OpenStreetMap (OSM) has succeeded
in its goal of creating and distributing geographic information for the world. However, OSM
is highly-biased to vehicle routing (i.e., road center lines are represented, but not sidewalks)
and map visualization (i.e., pedestrian crossings are represented as points). Therefore, until the
coverage of publicly-available sources is high enough, in order to build an accessibility data model

3

it is necessary to perform data mining processes on the existing data and define algorithms to
build the sidewalk and pedestrian crossing networks from the data collected.

Since physical accessibility depends on the environment geometry, point clouds are a valuable
source of information because they represent accurately, in 3D and in real magnitude the
environment acquired by a LiDAR equipment. Many works focus on curb detection as elements
of accessibility Suleymanov et al. (2019); Serna and Marcotegui (2013). Curbs are easily detected
because, in most cases, they are vertical elements connecting two horizontal surfaces (sidewalks
and road) and they have a direct view from the Mobile Laser Scanner trajectory. But curbs
are not the only important ground elements for physical accessibility. In Reference Balado et al.
(2018), urban ground elements are segmented and they are classified, based on the geometric
and topological features, in sidewalks, roads, curbs, and stairs (divided in risers and threads).
There are several methods for detecting stairs based on their geometry as a set of horizontal and
vertical surfaces. In the representation of the stairs as histograms, the steps are identifiable as a
sequence of regular peaks Yang et al. (2019). Mathematical morphology applied to point clouds
also serves to detect steps when one step is used as a structuring element Balado et al. (2020). In
addition to detecting the elements, it is necessary to evaluate their condition and dimensions to
check their accessibility. In Reference Hou and Ai (2020), the sidewalks are detected, and their
width is measured. In Reference Ai and Tsai (2016), other features as cross slope, grade, and curb
ramp slope are extracted on sidewalks and ramps. In Reference Balado et al. (2019), the free
unobstructed space left by obstacles on the navigable ground is calculated for profiles of people
without reduced mobility and people in wheelchairs.

All detection methods improve their effectiveness when the probable location is known before-
hand. Some methods focused on the detection of steps and/or ramps indoor entrances Schmit-
twilken and Plümer (2010), building entrances and road-sidewalks intersection Balado et al.
(2017), and crosswalk environments Soilán et al. (2018). Unlike the other elements, zebra crossings
are not detectable in point clouds because of their geometry, but because of the reflective paint,
which produces peak values in the intensity attribute Soilán et al. (2017). Another alternative to
the search for geometric forms in the point cloud is through the modeling of the human body.
Considering the human body a polyhedron Díaz Vilariño et al. (2016) or a model with 41 degrees
of freedom Maruyama et al. (2017), it can be moved by the environment to detect obstacles,
the steps, the slope of the ground, and the visibility of the signs. In a similar way to a human
body, some humanoid robots designed to climb stairs also integrate 3D data capture sensors
and software to recognize stairs and calculate the movement needed to climb them Oßwald et al.
(2011); Luo et al. (2013).

The use of sensors in mobile devices is bringing about a revolution in different fields such as
environmental sensing, health, activity detection, or social applications Capponi et al. (2019).
Applied to urban commuting, accelerometry data combined with mobile location allow detection
and geolocation of events such as falls Casilari et al. (2020) and difficulty walking Deb et al.
(2020). Light sensors allow the detection of regions of insufficient night lighting. The microphone
allows the capture of places with high noise levels. Despite the underlying potential, to date, most
work on the use of wearable and wearable sensors for user-centered detection has been based on
activity detection (especially those involving periodic movements over time)Lara and Labrador
(2012). Activity detection sometimes leads to the detection of the environment in which these
activities are carried out (for example, climbing stairs implies the detection and counting of the
number of steps, as well as the ease or difficulty that climbing them represents for the user).
However, the potential that the combination of the information captured by the different sensors
in mobile devices supposes for the detection of urban elements with an influence on mobility is
still to be explored in many cases. On the other hand, mobile sensors (or equivalently sensors
in wearable devices such as watches or smart bracelets) allow not only the detection of urban

4

Ingestion

 Accessibility Data Model

Applications

Figure 2: FlatCity System architecture.

elements but also the detection of the cost for the user to traverse these urban elements in terms
of physical and mental burden Brodie et al. (2016). Some of the benefits of detection systems
based on crowd-sensing using mobile multi-user sensors can be seen in Reference Hu et al. (2015),
allowing continuous updating of sensed elements with small detection delays.

Several research works can be found in the state of the art that make use of data extracted
from social networks to detect real-time events. One of the first and more popular examples is
the work of Sakaki et al. (2010). The authors developed a system that collected Twitter data
from Japanese Twitter users. They were able to detect 96% of the earthquakes reported by the
Japan Meteorological Agency. In many cases, their system was able to report the earthquakes
before they were published by the ads of the Meteorology Agency.

In the context of smart cities, we can find several works that exploit Twitter data to detect
events. Metro Averías (Congosto et al., 2015) is a system that collects complaints from Twitter
users about Madrid Metro, the underground transportation system of Madrid. Besides, the system
publishes reports about the most frequent complaints per line and alerts about possible breakdowns
in the Twitter account @metroaverias. Several works can be found in the state of the art that
develop systems that extract data from social networks to detect traffic events like accidents or
traffic jams. Among them, we can mention the works of Anastasi et al. (2013) and Kumar et al.
(2014). Finally, Wanichayapong et al. (2011) developed a system that extracts Twitter data to
detect traffic events, but also obstruction hazards and road conditions. They focus their work
on the detection of transportation events in roads and highways. They use a dictionary with
Places and Verbs written in the Thai language, where Places are names related to roads and their
elements and Verbs are terms related to traffic problems. Then they collected tweets that contain
at least one term from the Places dictionary and another term from the Verbs dictionary and
filtered those tweets that contained profanity or vulgarity terms.

3 System Architecture
Figure 2 shows the architecture of FlatCity, the system that we have developed to create a
mobility assistant that integrates information from multiple heterogeneous data sources. The
figure shows the three main components of the system. The upper left component (i.e., Ingestion)
represents the data ingestion component that is responsible for collecting data from multiple
sources to build the accessibility model of the city. The information collected and processed is
stored in the Accessibility Data Model component shown at the bottom of the figure. Finally, the
upper right component that represents the Applications that are offered to users of the system to
calculate the most accessible routes.

Figure 3 shows a UML component diagram of the architecture of the ingestion subsystem of
Flatcity. It is a layered architecture with four layers. The top layer (data sources) consists of the

5

four data sources that are currently considered in Flatcity: OpenStreetMap, surveying teams
using mobile LiDAR scanners, Smart City users providing volunteered crowd-sensed information,
and Twitter. The second layer (data collectors) consists of the components that are responsible for
collecting the information from the data sources and send it to the ingestion back-end. This layer
provides the system with independence from the data sources so that it is possible to modify them
without altering the ingestion system. Furthermore, as it is organized into small independent
components, it is possible to distribute them in cloud computing infrastructures in a simpler way.
The third layer (data ingestion) is a component that provides REST endpoints to receive the
information from the data sources and stores it in the data model. It is in turn structured as a
collection of independent services (Network API, Accessibility API, Obstacle API, Issue API, and
Social API, not shown as components in the figure) to support load balancing. The bottom layer
is the Flatcity accessibility data model stored in a PostgreSQL database.

The first data source that we consider in Flatcity is OpenStreetMap. The OSM Harvester
component is in charge of retrieving all the accessibility-related information for the whole area
of interest (usually, the entire city) and process it to build the street network and to collect the
reduced-mobility parking places, the destinations, and their reduced-mobility entrances. The
information collected from OpenStreetMap is used as the baseline information for Flatcity that
will be afterward refined with information collected from the other data sources. The OSM
Harvester component has to deal with the problem that OpenStreetMap data is designed to
represent roads but not sidewalks, pedestrian crossings, and other city infrastructures meant
for pedestrians and not for vehicles. Therefore, the OSM Harvester component has to build a
sidewalk network using the information collected from OpenStreetMap. This process is described
in further detail in Section 4.1.

The second data source is a surveying team using mobile LiDAR to discover accessibility
barriers. A team equipped with a mobile laser scanner drive or walk through specific areas
of interest and collects a point cloud. The point cloud is processed by the LiDAR processor
component and detailed information regarding accessibility (i.e., ramps, steps, and pedestrian
crossings) is collected. The information collected by this component can be used to improve the
baseline information collected from OpenStreetMap in areas of the city where the OpenStreetMap
data is poor or in areas of the city where there is a special interest regarding accessibility
(e.g., hospitals or other public buildings). The information provided by the LiDAR Processor
component to the ingestion back-end is much more precise than the information collected from
OpenStreetMap. Therefore, the ingestion back-end has to perform a conflation process to integrate
the coarse-grained OSM information with the fine-grained LiDAR data. The detection and the
conflation processes are described in Section 4.2.

The third data source is a mobile application for Smart City users. Two different types of
user-volunteered information can be retrieved. First, the mobile sensors of the device can be
used to identify and report obstacles. Second, users may explicitly report accessibility issues.
The mobile application collects the information and sends it to the ingestion back-end. This
information can be used to provide more detail over the OpenStreetMap data in areas where the
LiDAR information cannot be collected (e.g., private areas) or in areas that cannot be covered
with the LiDAR information because of the cost of retrieving the information. Also, due to cost
constraints, the mobile application can help to keep the information about obstacles updated
(we expect that in a real scenario the use of LiDAR devices will be used sparsely). The mobile
application is described in Section 4.3.

The fourth data source is the accessibility problems reported on Twitter. A software sensor
(named T-Hoarder) is used to filter the Twitter Streaming API using relevant keywords. For each
Tweet that is received, T-Hoarder extracts the geographic location of the Tweet (either because it
is provided by the user or extracted from the text). Then, T-Hoarder reports the problem to the

6

OSM
Harvester

LIDAR
Processor

Mobile
Application

T-Hoarder

Flatcity
Ingestion Back-end

Surveying Team

OpenStreetMap

Smart City Users

Twitter

Flatcity
 Accessibility Data Model

Network
API

Accessibility
API

Obstacle
API

Issue
API

Social
API

Use UseOverpass
API

Streaming
API

Data
sources

Data
collectors

Data
ingestion

Figure 3: Ingestion architecture.

7

Edge

normal_cost: Double

reverse_cost: Double

accessibility: Double

trajectory: LineString

Node

location: Point
start

* 1

end
* 1

Accessibility Barrier

date_detected: Date

location: Geometry

reliability: Double

Tweet

detectionType: DType

address: String

url: String

Mobile-Detected

elementType: EType

Disabled Parking

capacity: Integer

Entrance

accessibility: Double

Destination

name: String

type: DestType

location: Point

*

<<spatial>>
affected by

*

*

Figure 4: Data model.

Flatcity ingestion back-end. The component is described with more detail in Section 4.4.
Figure 4 shows the data model managed by the Accessibility Data Model component. The

Edge and Node classes at the top of the data model represent the graph of the city’s pedestrian
infrastructure network. Each Edge has two attributes that represent the cost of traveling the edge
in both directions (i.e., normal_cost and reverse_cost). It also has an attribute that represents
the level of accessibility of the edge (i.e., accessibility). A value of 1 in this attribute indicates
that the edge can be traversed by anyone. On the other hand, a value of 0 indicates that it is an
edge with barriers that can only be traversed by a non-disabled person. The values between 0
and 1 can be used to represent different levels of barriers in the edge. Finally, the Edge class also
has an attribute that represents the geographical path of the edge (i.e., trajectory).

The Accessibility Barrier class on the left of the data model represents the obstacles that are
identified by the mobile application for Smart City users and the Twitter software sensor. The
class has an attribute to represent the date on which the detection occurred (i.e., date_detected)
to ignore obstacles that may be obsolete. The class can also represent the geographical location
of the obstacle (i.e., location) using the generic Geometry data type so that not only points but
also lines and surfaces can be used. Finally, the attribute reliability represents the confidence
of the detection to inform the user of the probability of the obstacles being real. The class
Accessibility Barrier is specialized into two classes to represent each of the types of obstacles that
are currently supported by FlatCity: those detected from Tweets and those detected using the
mobile application. The class Tweet includes detection type used to extract the geographic location
of the Tweet (i.e., geolocated, georeferenced or extracted using natural-language processing; more
detail can be found in Section 4.4), the address detected, and the URL of the Tweet. The class
Mobile-Detected includes only the type of element detected. The Accessibility Barrier class
is associated to the edges of the network that are affected by the barrier. The association is

8

stereotyped as «spatial » to indicate that the edges affected by each barrier can be detected using
a spatial query involving the geographic information in both classes.

The classes that represent the possible places that the user can indicate as the destination of
the route are shown on the right side of the data model. On the one hand, the Disabled Parking
class represents the mobility-reduced parking places available in the city. The attribute capacity
can be used to indicate that there is more than one parking place in a single location. On the
other hand, the Destination class represents the possible points of interest that can be used as
the end point of a route. The class includes attributes to represent the name of the destination,
the type of destination, and the geographic location. Furthermore, each destination includes
a set of entrances (represented by the Entrance class). This allows destinations that are large
buildings with multiple entrances to be adequately represented. Besides, each entrance includes
the accessibility attribute with the same semantics that were described for the edges. Therefore,
the difficulty of using each particular entrance of a large building can be described.

Figure 5 shows the architecture of the applications that can be used by the Smart City users
to compute accessible routes. Both applications use the Accessibility Data Model through a
REST endpoint that is implemented in the Accessibility Back-end component. Two different
applications are provided—a web application and a mobile application. Both applications provide
functionality to find a route from a given origin to a destination (selected from the destinations
represented on the data model, or clicking on the map). In the general case, the route is computed
in three sections—from the origin to the location of the car of the user, from the car to the
mobility-reduced parking place closest to the destination, and from the parking place to the
entrance of the destination. The user is expected to walk in the first and the third sections, and
therefore the routes are computed using the Accessibility Data Model. The middle section is
expected to be traveled by car, and therefore the Accessibility Back-end delegates the computation
of this section to an external route provider (e.g., GraphHopper1, Open Source Routing Machine2,
or the Google Directions API). To allow the application to compute the route in these three
sections, it provides functionality to remember the place where the car was parked. Furthermore,
the user can also store the location of its home place to use it as origin or destination of the route.

4 Implementation

4.1 Extracting Information from OpenStreetMap
4.1.1 Automation of the Data Capture Process

The OSM Harvester component has been designed to allow automation of the OpenSteetMap
data capture process. It allows the definition of harvesting tasks whose conceptual model is shown
in Figure 6. Each Task is composed of three elements. The first one is the Configuration of the
task that consist of the connection information to the target database, the target schema into
which the data must be copied, and the action to be performed. The action can be one of the
following:

• Create. Creates the schema from scratch before importing OSM data.

• Update. Deletes all data from the schema before importing new OSM data.

• Append. Appends new OSM data to the existent in the schema.

• Import. Runs the import scripts without harvesting data from OSM.

9

Route
Provider

FlatCity
Mobile App

FlatCity
Web App

Flatcity
Accessibility Back-end

Smart City User

Flatcity
 Accessibility Data Model

Accessibility
API

UseUse

Route
API

Figure 5: Application architecture.

Task

Configuration

connection: String

target_schema: String

action: String

Harvest

bounding_box: Geometry

Import

script_path: String

*11

Figure 6: Conceptual model of an OSM Harverster task.

Listing 1: Example of an OSM Harverster script.
INSERT INTO t_des t inat i on (id , l o ca t i on , name , type)
SELECT id , geom AS l o ca t i on , tags−>’name ’ AS name ,

CASE WHEN tags−>’ shop ’ = ’ supermarket ’ THEN ’ supermarket ’
ELSE tags−>’ amenity ’
END AS type

FROM osm . nodes
WHERE tags−>’ amenity ’ IN (’ bank ’ , ’ pharmacy ’)

OR tags−>’ shop ’ IN (’ supermarket ’) ;

10

The second element of the task is the harvest definition. It currently consists of the bounding
box of the area of interest, but we plan to include filters in the future. We use the Overpass API
3 to extract the OSM data and osmosis 4 to parse and import the OSM data into the database.
The third element of the task is a collection of import scripts that must be executed after the
data is harvested. We currently support SQL scripts, but we plan to include support for other
scripting languages in the future. The process that builds the network described in the next
section is implemented as an SQL script. Listing 1 shows an example of an OSM Harverster
script that imports the banks, pharmacies and supermarkets into the table of destinations.

4.1.2 Building the Network

OpenStreetMap is designed to describe the infrastructure of roads for vehicles. It is possible
to describe the sidewalks, but there are only about 1.8 million of sidewalk segments5 in the
OpenStreetMap database compared to over 170 million road segments6. Furthermore pedestrian
crossings in OpenStreetMap are being tagged as points in the road section instead of lines between
sidewalks7. Hence, to build a network that can be used to compute accessible routes, we have
designed and algorithm to build the network of sidewalks and pedestrian crossings.

The algorithm that we have designed builds first a network of sidewalks, and then creates
pedestrian crossings between the sidewalks. To build the network of sidewalks we take into
account three cases:

• The road segments tagged as steps in OpenStreetMap are included directly with the
accessibility value set to 0 (i.e., can only be used by non-disabled persons).

• The road segments tagged as footway, pedestrian, path, or track in OpenStreetMap are
included directly with the accessibility value set to 1 (i.e., can only be used by non-disabled
persons). As future work, we plan to perform an analysis of the relief to find difficult ramps.

• We build a buffer of 4 m to each side of all the other road segments that are not tagged as
motorway in OpenStreetMap. Then, we aggregate all the road buffers to build the geometry
of paved area and we extract the boundary of the paved area as a sidewalk. Figure 7 shows
an example of this process. The dark blue lines represent the road segments extracted from
OpenStreetMap. The light blue surfaces represent the paved area built using a 4m buffer
around the roads. The black lines represent the sidewalks computed as the boundary of the
paved areas. Hence, we assume that there is a sidewalk to each side of each road that is not
restricted to pedestrians.

This algorithm assumes that there is a sidewalk on both sides of the road. It is impossible
to verify whether this holds using only OpenStreetMap data. However, it is possible to verify it
using LiDAR data and remove sidewalks that do not exist.

To add pedestrian crossings to the network, we first build a straight line from each crossing to
each sidewalk section that is closer than 8 m. This creates a star-like pattern from each crossing
to the sidewalks. Then, we remove all the line segments that have another line segment that is
shorter and with a difference in orientation smaller than 45 degrees. The remaining line segments

1(https://www.graphhopper.com/)
2(http://project-osrm.org/)
3(https://overpass-api.de/)
4(https://github.com/openstreetmap/osmosis)
51,805,845 segments as of 5th November 2020 as seen at https://wiki.openstreetmap.org/wiki/Key:sidewalk
6170,086,925 segments as of 5th November 2020 as seen at https://wiki.openstreetmap.org/wiki/Key:highway
73,069,077 points compared to 822,689 lines as of 5th November 2020 as seen at https://wiki.openstreetmap.

org/wiki/Key:crossing

11

https://www.graphhopper.com/
http://project-osrm.org/
https://overpass-api.de/
https://github.com/openstreetmap/osmosis
https://wiki.openstreetmap.org/wiki/Key:sidewalk
https://wiki.openstreetmap.org/wiki/Key:highway
https://wiki.openstreetmap.org/wiki/Key:crossing
https://wiki.openstreetmap.org/wiki/Key:crossing

Figure 7: Building a network of sidewalks from OpenStreetMap (OSM) roads.

are considered the pedestrian crossings. Figure 8 shows an example of this process. The light dark
blue points represent the crossings extracted from OpenStreetMap. The light blue lines represent
the star-like pattern created from each crossing to each sidewalk segment closer than 8 m. Finally,
the green lines represent the pedestrian crossings that are left after removing line segments. The
result is a simpler network of pedestrian crossings that makes the route computation more efficient
even though there are still has additional pedestrian crossings that are not real.

4.2 Network and Obstacles Detection from LiDAR Data
4.2.1 Detection

The elements forming the urban ground are automatically segmented and classified by the method
proposed in Reference Balado et al. (2017). The input data is a point cloud of an urban street
with one line of facades. First, the area near the ground plane of the point cloud is delimited as a
region of interest (ROI) and detected based on the RANSAC algorithm. Then, the surface normals
of each point are calculated with respect to its nearest neighbors in order to know the inclination
of each point. The vertical points are rasterized to calculate the height of the vertical elements
and to detect the steps and curbs, whose height is less than h. Finally, given the inclination
of each point and the topological relations with other ground elements, the ground points are
segmented and classified into roads, curbs or curb-ramps, sidewalks, and steps or ramps.

The detection of crosswalks, as the other main element in pedestrian navigation along the
sidewalks, is based on the method proposed in Reference Soilán et al. (2017). The points
corresponding to crosswalks are recognizable because of the intensity attribute, as the reflective
paint generates intensity peaks. When high-intensity points are detected, a bounding box is
generated that groups the entire crosswalk as a single element.

12

Figure 8: Building pedestrian crossings from OSM crossings.

4.2.2 Modeling

The modeling process of each ground element is modified from the method proposed in Ref-
erence López Pazos et al. (2017): modeling of each element separately and based on its size.
Sidewalks are modeled based on their length locating each node separated to generate a pedestrian
map. The number of nodes of each sidewalk section is obtained from the length of each section
divided by d. Then, the k-means algorithm is applied to the sidewalk points group the points
around each future node. Each node is located in the geometric center of each group of points.
Finally, once located the sidewalk nodes, the edges between the sidewalk nodes are estimated
based on the search for other nodes at a distance d.

The ramps and steps of the building entrances are modeled as one node located in the geometric
center of each element. Subsequently, each ramp or step node is connected to the nearest sidewalk
node. The crosswalks are modeled as one node at the geometric center and connected to the
nearest sidewalk node. If the edge that connects the crosswalk with the sidewalk crosses a set of
points belonging to a curb or curb-ramps, the edge is replaced by two edges, and an intermediate
node (step or ramp class as appropriate) is generated connecting with the sidewalk and the
crosswalk nodes. Curbs and roads are not modeled, as they are not pedestrian navigation elements.
In this way, a pedestrian map is generated based on sidewalks with accessibility information on
building entrances and crosswalks.

4.2.3 Integration of the LiDAR Model in the OSM Model

Given a sidewalk and crosswalk map obtained from OSM, and the more accurate map generated
from LiDAR data in the previous subsections, the objective of this process is to integrate the
LiDAR map into the OSM, replacing the corresponding edges of the OSM map. On the OSM
map, the sidewalks are defined as lines and the crosswalks as polylines. The integration process
of the pavements and entrances is shown in Figure 9. First, a buffer B is generated around the

13

Figure 9: Integration of the LiDAR data in the model: (a) map obtained by means of LiDAR
(green) and from the OSM (black), (b) generation of the buffer and detection of the connection
points, (c) generation of connection lines between both maps.

sidewalk elements of the LiDAR map to look for the edges of the OSM map that must be replaced.
Edges or nodes of building entrances are not used for the buffer generation. The lines of the OSM
map to be substituted are those that intersect with buffer B. The connection nodes Cn of the
OSM map with the LiDAR map are detected as the end-point of the OSM line that crosses the
border of B and is outside the buffer B. From the points Cn, the nearest nodes Ln are searched
in the LiDAR map. Then, new lines are generated whose beginning-end points are defined by Cn
and Ln, replacing the lines crossing the border of B. In case a sidewalk is not detected in the
point cloud, the corresponding lines of the OSM map would be deleted.

The procedure is similar for pedestrian crossing integration. Given as input data a point cloud
of one line of facades, in the LiDAR model, only half crosswalks are represented, defined by the
central point and the connection with the nearest sidewalks through a curb or ramp nodes. A
buffer is generated around crosswalk elements modeled from LiDAR data to detect the polylines
of the OSM intersecting. The OSM polyline is replaced by a line defined by: (1) the node of
the curb (or curb-ramp) connecting crosswalk with LiDAR sidewalk model and (2) the node
connecting OSM crosswalk with the front OSM sidewalk. This point is detected by searching for
the furthest point of the polyline OSM crosswalk to LiDAR sidewalk connection.

4.3 Detection of Mobility Barriers Using Hardware Sensors on Mobile
Devices

4.3.1 Mobile Application for Data Capture

In order to have access to the hardware data from mobile citizens in a smart city and convert
the sensed data into knowledge about physical barriers paying and impact on human mobility,
an Android application that allows the capture and processing of sensor data have been fully
developed and trained. The application makes use of a Convolutional Neural Network (CNN)
deep learning model trained from data samples from hardware sensors and classifies new samples
in order to extract useful information about the presence of physical obstacles.

The hardware sensors used to capture the data to feed the CNN are:

• Gyroscope.

14

• Magnetometer.

• Accelerometer.

• Gravity Sensor.

Hardware sensors generate continuous streams of data. In order to feed the CNN, a moving
windowing schema has been used. An overlap of 50% has been used in order to better detect
objects which may not be aligned with the time windows.

The sensor data is preprocessed in order to reduce noise using a 4th order low pass Butterworth
filter. A normalization process is then applied to achieve faster convergence in the training of the
CNN by subtracting the mean value of the sensor data in the time window and dividing each
sample by the standard deviation.

4.3.2 Mobile Application Modes of Operation

The mobile application is divided into 2 main modes of operation: capture mode and detection
mode. Capture mode allows the capture of sensor data into a local .csv file and the transmission
of the data to a central server which will be responsible for the training of a deep learning-based
machine learning model. The capture mode guides each user participating in the training data to
walk through a predefined series of regions containing physical barriers and records and tags the
data segments. Once a valid model has been trained combining the data from several users in
order to generate a model that can adapt to new users, the model is transferred to the mobile
application for detection mode. In this mode, the new data captured from the sensors when the
user is traversing an uncharted zone will be used as input to the model and real-time classification
of the movements made by the user will be carried out in order to detect new physical barriers
(which will be sent to the central system as previously described).

4.3.3 Convolutional Neural Network Model

The Convolutional Neural Network is made up of the following layers:

• 1-dimensional convolutional layer with 64 filters, filter size = 8 and relu activation function.

• MaxPooling of size 4.

• 1-dimensional convolutional layer with 128 filters, filter size = 32 and relu activation function.

• MaxPooling of size 2.

• Dense layer of 64 neurons, relu activation function.

• Dense layer of 64 neurons, relu activation function.

• 0.25 dropout.

• Dense layer of n neurons and softmax activation function (being n the number of obstacles
to train and detect by the model).

The input of each sensor is fragmented into 5-second windows and a 50% overlap is used
between consecutive windows. Table 1 captures the details of the Keras 8 model created to
implement the CNN architecture.

The model has been trained using the following parameters:
8(https://keras.io/)

15

https://keras.io/

Table 1: CNN model structure in keras.

Layer (type) Output Shape Param #

conv1d_1 (Conv1D) (None, 249, 64) 1,088
max_pooling1d_1 (MaxPooling1 (None, 62, 64) 0
conv1d_2 (Conv1D) (None, 31, 128) 262,272
max_pooling1d_2 (MaxPooling1 (None, 15, 128) 0
flatten_1 (Flatten) (None, 1920) 0
dense_1 (Dense) (None, 64) 122,944
dense_2 (Dense) (None, 64) 4,160
dropout_1 (Dropout) (None, 64) 0
dense_3 (Dense) (None, 6) 390

• Batch size = 32

• Number of epochs = 100

• Optimizer = adam

The model was able to find obstacles with a 0.93 accuracy on the validation data.

4.3.4 Model Training and Transfer

The training data from participating users are sent to a central server to train a CNN based
model. Each class contains several samples from hardware sensor data from different users going
through a particular type of obstacle. Once a large training set with several classes is collected, a
notebook in python has been developed to generate CNN based machine learning models that
allow classifying the information from the hardware sensors into physical barriers such as stairs
and slopes. The Tensorflow library has been used to implement the CNN based machine learning
model since it can be converted into a Tensorflow Lite model that can be used by the mobile
application. Once the model has been generated, it would only be necessary to send it to the
mobile application to use it in the detection mode.

Figure 10 shows the mobile application in detection mode showing the detected obstacles on a
map.

4.3.5 Integration with the FLATCity System

The physical barriers detected when using the mobile application in detection mode are sent to
the FLATCity central system which will use them for accessible route calculations. The CNN
network will assign a probability to each data fragment estimating the likelihood that the data
fragment matches each of the target barriers. If one of the estimated probabilities is above a
matching threshold, a JSON object will be created to contain the detected information and sent to
the FLATCity central servers using a REST API (http://flatcity.lbd.org.es/backend/api/
entities/elements). The information sent captures the type of element detected, the date and
time, the GPS coordinates of the detected element, and the probability assigned by the output
layer in the CNN network (softmax function). An example of a particular staircase detected in
Vigo (Spain) is:

{"activity": "Escaleras",
"date": "2020-10-22T09:39:27.153687",

16

http://flatcity.lbd.org.es/backend/api/entities/elements
http://flatcity.lbd.org.es/backend/api/entities/elements

Figure 10: Obstacles detected.

"location": {"type": "Point", "coordinates": [42.232464, -8.729529]},
"probability": 0.95}

4.4 Detection of Mobility Barriers Using Twitter Data
Twitter users often write tweets related to something that they see during their travel. The goal
of this component of the FLATCity system is to capture those tweets that are related to obstacles
or mobility issues and to process them to identify the location and the type of the obstacle.

The Twitter subsystem (Sánchez-Ávila et al., 2020) is a pipeline composed of the following
stages: (1) data capture; (2) tweet preprocessing; (3) location extraction; and (4) validity detector.
In the rest of this section, we describe briefly these stages. We focus on tweets that are written in
Spanish because our experiments are performed in Spain. However, the Twitter subsystem could
be adapted to work with other languages and locations by adapting the components that make
use of specific linguistic and location information.

4.4.1 Data Capture

This is the initial stage of the Twitter subsystem. It is in charge of detecting tweets related
to obstacles or mobility issues. This is done with the help of the tool T-Hoarder developed
by Congosto et al. (2017). Data capture is done using queries that combine two types of terms:
terms that represent urban elements (examples: “acera” (pavement), “paso de cebra” (pedestrian
crossing), etc.) terms that describe the condition of an urban element (examples: “mal estado”
(poor condition), “estrecho” (narrow), etc.). Each captured tweet must have at least a term of
each of these two types. A similar approach has been used in the work of Wanichayapong et al.

17

(2011).

4.4.2 Tweet Preprocessing

This stage is in charge of removing tweets that are not written in Spanish or that are retweets or
quotes. Also, it removes symbols like hashtags, emoticons, and URLs from the tweet.

4.4.3 Location Detector

There exist two mechanisms in the Twitter app to associate a position to a tweet: georeferencing
and geopositioning. A georeference is a singular location, selected manually by the user from a set
of predefined places known as Twitter Places (See https://blog.twitter.com/official/en_
us/a/2010/twitter-places-more-context-for-your-tweets.html (visited on 24/08/2020).).
A geoposition is composed of the GPS coordinates of the location where the tweet is written.

Unfortunately, it is well-known that most tweets come with no location information (in
particular, over 98% of the tweets that we captured in the experiments performed to test this tool
came with no location information). As the location of the mobility issue is a crucial part of the
system, we combined the two mechanisms already mentioned (when available) with an algorithm
that extracts the location information from the text of the tweet. Our algorithm is based on
extracting the named entities from the text of the tweet and then performing a search to locate
the street and the city mentioned in the tweet using a database with geographical information of
Spain obtained from the Spanish National Statistics Institute (INE).

4.4.4 Validity Detector

Some of the tweets captured by the T-Hoarder tool do not report mobility issues, even if they
contain both terms that represent urban elements and terms that represent the condition of an
urban element. In the final stage, a classifier is executed to discard those tweets that do not
report mobility issues. The classifier must be trained with a corpus of manually annotated tweets
(in our experiments we have used a corpus of 560 tweets, of which 234 tweets were manually
annotated as relevant and the others were annotated as non-relevant). For the classification task,
each tweet is represented with a vector of features. Some of such features have been selected
manually (number of words, the distance between urban element term and the condition term,
number of verbs between the urban element term and the condition term, etc.), while others have
been selected using the Wikipedia Miner semantic annotator (Milne and Witten, 2013).

4.4.5 Integration of the Twitter Detector in the FLATCity System

For the purpose of route planning, it is crucial to know the precise location of the mobility barrier.
Therefore, only the information extracted from tweets with geoposition information attached is
used to add information to a specific point in the network. The remaining tweets are used as
alerts that can be used to further explore certain areas with any of the other techniques available
in the FLATCity system (LiDAR and mobile sensors).

5 Case Study

5.1 Experimental Setup
To prove the viability of FlatCity, we designed a case study that includes the collection of real data
and the computation of accessible routes in a city. For the case study, we selected the city of Vigo

18

https://blog.twitter.com/official/en_us/a/2010/twitter-places-more-context-for-your-tweets.html
https://blog.twitter.com/official/en_us/a/2010/twitter-places-more-context-for-your-tweets.html

Figure 11: Area of study.

(Spain) since it is a large city (295,364 inhabitants in the municipality and 480,525 inhabitants in
the metropolitan area in 2019). Besides, the primitive city is located on the terraces of Monte do
Castro, which causes the city to abound in ramps and flights of stairs to save unevenness.

The specific case study focuses on a person who lives at Av. das Camelias 2
(https://www.openstreetmap.org/#map=19/42.23392/-8.72876) and who must go to a bank
office located at Av. da Florida 35 (https://www.openstreetmap.org/#map=19/42.21870/-8.
73563). Hence, the city blocks of Av. das Camelias 50 and Av. da Florida 35 are considered
the target blocks to be analyzed using LiDAR and the mobile application to detect accessibility
barriers.

5.2 Data Collection
We collected data from OpenStreetmap on October 19th, 2020. Figure 11 shows the area of
study defined by the bounding box ((−8.76857, 42.20148), (−8.62275, 42.26849)). Table 2 shows
the number of elements of each type imported from OpenStreetMap. We decided to import
three types of destinations: banks, pharmacies, and supermarkets. The mobility-reduced parking
places were not available in OpenStreetMap, hence we decided to import them ourselves using
the information from the Open Data Portal of the Vigo City Council, before downloading them
with our OSM Harvester component.

The LiDAR data were acquired with a Lynx Mobile Mapper Puente et al. (2013). The point
clouds of Av. da Florida contained 7.6 and 18 million points and point clouds of Av. das Camelias
contained 5 and 9.5 million points. The average point density of the sidewalks is 2000 points per
square meter with punctual variations due to the distance to the MLS and occlusions. The method

19

https://www.openstreetmap.org/#map=19/42.23392/-8.72876
https://www.openstreetmap.org/#map=19/42.21870/-8.73563
https://www.openstreetmap.org/#map=19/42.21870/-8.73563

Table 2: Elements imported from OpenStreetMap.

Element type Count

Pedestrian crossings 1,254
Road segments 4,555
Pedestrian paths 1,476
Steps 282
Banks 79
Pharmacies 140
Supermarkets 71
Parking places 642

Table 3: Elements in the walking network.

Element type OSM imported LIDAR detected LiDAR removed Total

Walkable edges 14,244 226 14 14,456
Pedestrian crossings 2,978 2 4 2,976
Total 17,222 228 18 17,432

of extracting information from LiDAR data abovementioned depends on two main parameters.
The maximum height of steps and curbs h was limited to 25 cm based on the built environment,
considering it to be an acceptable height for one person to climb. The separation between the
sidewalk nodes was established in d = 5 m, which offers a compromise solution between the
precision obtained from OSM and the work of Reference López Pazos et al. (2017).

Table 3 shows the edges that form the graph in the walking network. The second column
describes the elements in the network (i.e., walkable edges and pedestrian crossings) after executing
the process described in Section 4.1. The third and the fourth columns describe the elements that
were found after processing the LiDAR data and the elements collected from OpenStreetMap that
have to be deleted, respectively. Finally, the fifth column describes the final amount of elements
of each type in the network.

The mobile application to detect mobility barriers was used on the city blocks that were
previously considered as the detailed area of interest. Four different segments of walking, around
100 m in length, were recorded. Eight additional elements of type stairs were detected and
included in the Accessibility Data Model as possible mobility barriers.

Finally, the component T-Hoarder was left running from 24th July 2020 to 4th November
2020. During that time, it captured 622 relevant tweets (i.e., tweets describing mobility barriers
in Spain). Table 4 describes the different types of tweets that were captured. Unfortunately, only
seven of the tweets captured were located in the City of Vigo, and none of them were located in
the detailed area of study. This was expected because it would have been a huge coincidence
that a mobility problem happened during the study period and that somebody tweeted about it.
Hence, we decided to send ourselves eleven tweets in the detailed area of study to validate that
they were captured and displayed.

5.3 Route Computation
To start the test, users store the location of their homes in their profile and the location where
they parked their cars using an specific map-based tool. Then, they use the panel shown in

20

Table 4: Tweets captured by T-Hoarder.

Geolocalization type Tweet count

Geolocalized (exact coordinates) 7
Georeferenced (approximate coordinates) 26
Natural language processing (street found) 240
Natural language processing (without street) 349

Figure 12: Configuring the route from the home of the user to a bank office at Av. da Florida 35.

Figure 12. In the panel, the user specifies the origin and the destination by clicking on the map
or selecting from a suggestion list. The home button can be used to indicate that the route must
start or stop at the home location. The first check box between the origin and the destination can
be used to indicate whether the route starts from the user’s car (i.e., the check box Walk to my
car is left unchecked) or the user must first walk to the location where the car was parked. The
second checkbox can be used to locate a reduced-mobility parking place close to the destination
and add an additional walking segment from the parking to the destination, or whether the user
will try to find a parking place upon reaching the destination. Additionally, the user can indicate
that all the route will be done walking selecting the walking icon in the top of the panel. When
the route is computed it is displayed in the map as it is shown in Figure 13. The walking segments
are shown in blue and the driving segments in green.

Figure 14 shows further details of the route shown in Figure 13. Figure 14a shows the start of
the route with the user walking from home to the location where the car was parked (in blue)
using pedestrians crossings to change the side of the road. Figure 14b shows the end of the
route. The walking segment of the route is too long because the pedestrian crossing close to the
reduced-mobility parking where the car should be parked is missing in the OpenStreetMap data
(as many others)

Figure 15 shows the obstacles that were detected in the first part of the route to Av. da
Florida 35. The list of obstacles that can affect the route is shown on the left side of the map
using color-coding to indicate the reliability of the obstacle. It shows three of the tweets that
were created by and two obstacles detected by the mobile application. Further details of the
obstacle can be shown (e.g., the original Tweet).

21

Figure 13: Complete route from the home of the user to a bank office at Av. da Florida 35.

(a) Start of the route. (b) End of the route.

Figure 14: Details of the route shown in Figure 13.

22

Figure 15: Obstacles at the first part of the route to Av. da Florida 35.

5.4 Discussion
The case study that we have designed and executed has allowed us to test the viability of FlatCity.
We have verified that OpenStreetMap is not designed to perform route calculations for people
walking since there is no data related to the sidewalk network. Furthermore, OpenStreetMap
recommends to introduce pedestrian crossings as points in the road network without connecting
sidewalk sections, hence pedestrian crossings in OpenStreetMap cannot be used for routing.
Finally, although the amount of information available is significant, it is far from perfect. In our
case, we had to add to OpenStreetMap the disabled parking spaces provided by the Vigo City
Council in its open data portal 9. As a positive aspect of OpenStreetMap, we have to emphasize
that its open nature allows to propose new features and improve the quality of the data easily.

Scanning city sections with a mobile LiDAR scanner has proven very valuable. It is an
effective method for improving the sidewalk network, as well as detecting pedestrian crossings
and obstacles on the sidewalk. In addition, point clouds allow the recognition of other elements
of the road network Holgado-Barco et al. (2017); Balado et al. (2020). However, the cost of the
equipment and the effort to apply it to a whole city is still high, and hence it could be used
initially in selected areas with greater interest (e.g., because of the higher flow of people).

Retrieving obstacles using user-voluntereed information and a mobile application has proven
very valuable to detect physical barriers. Similarly, detecting mobility barriers using Twitter
Data has also proven valuable even though the number of geolocalized and georeferenced tweets
is very low compared to the number of tweets captured (less than 10%). The reason is that
Twitter has decided that it does not have any interest on precisely located tweets and it is not
possible to create such tweets anymore and a different client application has to be used. However,
one can foresee that integrating a Twitter client that produces geolocalized tweets in the mobile
application of a Smart City could serve two purposes: on the one hand users would report
obstacles more frequently, and on the other hand the tweets created would be useful for FlatCity
and other applications.

We have tried to compare the results of our system with existing applications. We did not
9(https://datos-ckan.vigo.org/dataset/parking-discapacitados)

23

https://datos-ckan.vigo.org/dataset/parking-discapacitados

find any application that could compute accesible routes in a city. Wheelmap.org 10 is a map
for finding wheelchair accessible places by marking public places with their accessibility level
(i.e., fully, partly and not accessible). It also has a mobile application to browse and use the
information. However, it does not record information about the sidewalks and it does not provide
route finding functionality nor information regarding obstacles in the street. Google Maps 11

records information regarding the accessibility of public transit stations and routes, as well as
public places. However, the pedestrian route computation uses the road network and it does not
have information regarding sidewalks.

6 Conclusions
Different infrastructure elements and obstacles in the streets affect the mobility of people in smart
cities in particular ways. This paper presents a novel architecture to build an information system
that collects information from many heterogeneous data sources, integrates the information into a
model of the city infrastructure, and compute routes adapted to each person that wants to move
inside a smart city, either walking or by car. The architecture is based on a multi-sensor approach
for holistic data capture, easy to use user interfaces, and optimized data storage and processing.
The proposed architecture leverages available open data (from sources such as OpenStreetMap)
with crowd-sensed information (from mobile apps and Twitter) and it uses additional ad-hoc data
sources (based on LiDAR) to create city mobility maps from which user adapted routes can be
computed. These mobility maps include information not only about different obstacles detected
but also capture an estimation about the severity in which they affect the mobility of different
people influenced by mobility limitations. Some of the data sources are of an asynchronous nature
(i.e., OpenStreetMap and LiDAR) while other are synchronous (i.e., the user-volunteered sensor
data and the issues reported with the mobile application, and the Tweets extracted from the
Twitter Streaming API), thus building an accessibility data model that captures both the static
and the dynamic aspects of urban mobility. The manuscript has also presented a case study
in which the proposed architecture has been validated showing promising results for the future
conception of personalized route recommendations.

The architecture and the the processes of the information system, that were described in the
paper, contribute to the fields of spatial data mining (e.g., building a network of pedestrian infras-
tructures from OpenStreetMap information), large scale geospatial processing (e.g., extracting
ramps, steps, and pedestrian crossings from mobile-sensed LiDAR data), geospatial data fusion
(e.g., integrating the information collected from OpenStreetMap with the information obtained
from the LiDAR data), and geospatial NLP (e.g., detecting accessibility problems with software
sensors in social networks such as Twitter).

This work opens new and interesting lines of future work. On the one hand, additional
open data sources beyond OpenStreetMap have to be considered an included in the conflation
process (e.g., the information that wheelmap.org 12 stores in OpenStreetMap regarding details
on the indoor accessibility of the destinations, or the open data information provided by cities).
On the other hand, additional information could be obtained from the LiDAR point clouds or
the crowd-sensed information (e.g., slopes of the ramps, material of the pavement). Similarly,
additional social networks could be sensed to obtain more information, even though the current
trend of their owners is to limit the open-access to the information. Furthermore, additional
synchronous data sources must be considered to capture more precisely the real-time or near

10(https://wheelmap.org/)
11(http://maps.google.com/)
12(https://wheelmap.org/)

24

https://wheelmap.org/
http://maps.google.com/
https://wheelmap.org/

real-time aspects of mobility (e.g., a work in progress a sidewalk that is undergoing a repair). As
an example, the repair crew of the city could use the mobile application described in Section 4.3 to
provide additional information regarding obstacles and accessibility issues. Finally, the possibility
of using the information from one source (e.g., Twitter) to adjust the sensibility from another
source (e.g., OpenStreetMap) must also be explored.

Funding
This work was supported in part by the project Friendly barrierLess AdapTable City (FLATCity)
(Ministerio de Ciencia, innovación y Universidades/ERDF, EU) funded by the Spanish Agencia
Estatal de Investigación (AEI, doi 10.13039/501100011033), and in part by the European Regional
Development Fund (ERDF), under Grants TIN2016-77158-C4-1-R, TIN2016-77158-C4-2-R and
TIN2016-77158-C4-3-R. This work was also supported in part by the project Massive Geospatial
Data Storage and Processing for Intelligent and Sustainable Urban Transportation (MaGIST),
funded by the Spanish Agencia Estatal de Investigación (AEI, doi 10.13039/501100011033) under
grants PID2019-105221RB-C41, PID2019-105221RB-C43 and PID2019-105221RB-C44. The
research of Miguel R. Luaces was also partially founded by: Xunta de Galicia/FEDER-UE GRC:
ED431C 2017/58 and Xunta de Galicia/FEDER-UE, ConectaPeme, GEMA: IN852A 2018/14.
Miguel R. Luaces also wishes to acknowledge the support received from the Centro de Investigación
de Galicia “CITIC”, funded by Xunta de Galicia and the European Union (European Regional
Development Fund- Galicia 2014-2020 Program), by grant ED431G 2019/01. Jesús Balado and
Lucía Díaz-Vilariño would like to thank to the Xunta de Galicia given through human resources
grants ED481B-2019-061 and ED481D 2019/020, respectively.

References
Panta, Y.R.; Azam, S.; Shanmugam, B.; Yeo, K.C.; Jonkman, M.; De Boer, F.; Alazab, M.
Improving Accessibility for Mobility Impaired People in Smart City using Crowdsourcing. In
Proceedings of the 2019 Cybersecurity and Cyberforensics Conference (CCC), Melbourne,
Australia, 8–9 May 2019; pp. 47–55.

Saha, M.; Saugstad, M.; Maddali, H.T.; Zeng, A.; Holland, R.; Bower, S.; Dash, A.; Chen, S.; Li,
A.; Hara, K.; et al. Project sidewalk: A web-based crowdsourcing tool for collecting sidewalk
accessibility data at scale. In Proceedings of the 2019 CHI Conference on Human Factors in
Computing Systems, Glasgow, UK, 4–9 May 2019; pp. 1–14.

Ding, C.; Wald, M.; Wills, G. A survey of open accessibility data. In Proceedings of the 11th
Web for All Conference, Seoul, Korea, 7–11 April 2014; pp. 1–4.

Suleymanov, T.; Kunze, L.; Newman, P. Online Inference and Detection of Curbs in Partially
Occluded Scenes with Sparse LIDAR. In Proceedings of the 2019 IEEE Intelligent Transportation
Systems Conference (ITSC), Auckland, New Zealand, 27–30 October 2019; pp. 2693–2700.

Serna, A.; Marcotegui, B. Urban accessibility diagnosis from mobile laser scanning data. ISPRS
J. Photogramm. Remote. Sens. 2013, 84, 23–32, doi:10.1016/j.isprsjprs.2013.07.001.

Balado, J.; Díaz-Vilariño, L.; Arias, P.; González-Jorge, H. Automatic classification of ur-
ban ground elements from mobile laser scanning data. Autom. Constr. 2018, 86, 226–239,
doi:10.1016/j.autcon.2017.09.004.

25

https://doi.org/https://doi.org/10.1016/j.isprsjprs.2013.07.001
https://doi.org/https://doi.org/10.1016/j.autcon.2017.09.004

Yang, F.; Liang, Y.; Li, D.; Su, F.; Zhu, H.; Zuo, X.; Li, L. Detection of Space Connectivity from
Point Cloud for Stair Reconstruction; Technical Report; EasyChair: Manchester, UK, 2019.

Balado, J.; van Oosterom, P.; Díaz-Vilariño, L.; Meijers, M. Mathematical morphology directly
applied to point cloud data. ISPRS J. Photogramm. Remote. Sens. 2020, 168, 208–220.

Hou, Q.; Ai, C. A network-level sidewalk inventory method using mobile LiDAR and deep
learning. Transp. Res. Part C Emerg. Technol. 2020, 119, 102772.

Ai, C.; Tsai, Y. Automated sidewalk assessment method for americans with disabilities act
compliance using three-dimensional mobile lidar. Transp. Res. Rec. 2016, 2542, 25–32.

Balado, J.; Díaz-Vilariño, L.; Arias, P.; Lorenzo, H. Point clouds for direct pedestrian pathfinding
in urban environments. ISPRS J. Photogramm. Remote. Sens. 2019, 148, 184–196.

Schmittwilken, J.; Plümer, L. Model-based reconstruction and classification of facade parts in 3D
point clouds. Int. Arch. Photogramm. Remote. Sens. Spat. Inf. Sci. 2010, 38, 269–274.

Balado, J.; Díaz-Vilariño, L.; Arias, P.; Garrido, I. Point clouds to indoor/outdoor accessibility
diagnosis. ISPRS Ann. Photogramm. Remote. Sens. Spat. Inf. Sci. 2017, 4, 287–293.

Soilán, M.; Riveiro, B.; Sánchez-Rodríguez, A.; Arias, P. Safety assessment on pedestrian crossing
environments using MLS data. Accid. Anal. Prev. 2018, 111, 328–337.

Soilán, M.; Riveiro, B.; Martínez-Sánchez, J.; Arias, P. Segmentation and classification of road
markings using MLS data. ISPRS J. Photogramm. Remote. Sens. 2017, 123, 94–103.

Díaz Vilariño, L.; Boguslawski, P.; Khoshelham, K.; Lorenzo, H.; Mahdjoubi, L. Indoor navigation
from point clouds: 3d modelling and obstacle detection. ISPRS Int. Arch. Photogramm. Remote.
Sens. Spat. Inf. Sci. 2016, XLI-B4, 275–281, doi:10.5194/isprs-archives-XLI-B4-275-2016.

Maruyama, T.; Kanai, S.; Tada, M. Simulation-Based Evaluation of Ease of Wayfinding Using
Digital Human and As-Is Environment Models. ISPRS Int. J. Geo-Inf. 2017, 6, 267.

Oßwald, S.; Gutmann, J.S.; Hornung, A.; Bennewitz, M. From 3D point clouds to climbing stairs:
A comparison of plane segmentation approaches for humanoids. In Proceedings of the 2011
11th IEEE-RAS International Conference on Humanoid Robots, Bled, Slovenia, 26–28 October
2011; pp. 93–98.

Luo, R.C.; Hsiao, M.; Liu, C.W. Multisensor integrated stair recognition and parameters
measurement system for dynamic stair climbing robots. In Proceedings of the 2013 IEEE
International Conference on Automation Science and Engineering (CASE), Madison, WI, USA,
17–20 August 2013; pp. 318–323.

Capponi, A.; Fiandrino, C.; Kantarci, B.; Foschini, L.; Kliazovich, D.; Bouvry, P. A survey on
mobile crowdsensing systems: Challenges, solutions, and opportunities. IEEE Commun. Surv.
Tutorials 2019, 21, 2419–2465.

Casilari, E.; Álvarez-Marco, M.; García-Lagos, F. A Study of the Use of Gyroscope Measurements
in Wearable Fall Detection Systems. Symmetry 2020, 12, 649.

Deb, S.; Yang, Y.O.; Chua, M.C.H.; Tian, J. Gait identification using a new time-warped
similarity metric based on smartphone inertial signals. J. Ambient. Intell. Humaniz. Comput.
2020, 11, 4041–4053.

26

https://doi.org/10.5194/isprs-archives-XLI-B4-275-2016

Lara, O.D.; Labrador, M.A. A survey on human activity recognition using wearable sensors.
IEEE Commun. Surv. Tutorials 2012, 15, 1192–1209.

Brodie, M.A.; Coppens, M.J.; Lord, S.R.; Lovell, N.H.; Gschwind, Y.J.; Redmond, S.J.;
Del Rosario, M.B.; Wang, K.; Sturnieks, D.L.; Persiani, M.; et al. Wearable pendant de-
vice monitoring using new wavelet-based methods shows daily life and laboratory gaits are
different. Med Biol. Eng. Comput. 2016, 54, 663–674.

Hu, S.; Su, L.; Liu, H.; Wang, H.; Abdelzaher, T.F. Smartroad: Smartphone-based crowd sensing
for traffic regulator detection and identification. ACM Trans. Sens. Networks (TOSN) 2015,
11, 1–27.

Sakaki, T.; Okazaki, M.; Matsuo, Y. Earthquake shakes Twitter users: Real-time event detection
by social sensors. In Proceedings of the 19th International Conference on World Wide Web,
Raleigh North, CA, USA, 26–30 April 2010; pp. 851–860.

Congosto, M.; Fuentes-Lorenzo, D.; Sánchez-Fernández, L. Microbloggers as Sensors for Public
Transport Breakdowns. IEEE Internet Comput. 2015, 19, 18–25.

Anastasi, G.; Antonelli, M.; Bechini, A.; Brienza, S.; D’Andrea, E.; De Guglielmo, D.; Ducange,
P.; Lazzerini, B.; Marcelloni, F.; Segatori, A. Urban and social sensing for sustainable mobility
in smart cities. In Proceedings of the 2013 Sustainable Internet and ICT for Sustainability
(SustainIT), Palermo, Italy, 30–31 October 2013; pp. 1–4.

Kumar, A.; Jiang, M.; Fang, Y. Where not to go? Detecting road hazards using Twitter. In
Proceedings of the 37th International ACM SIGIR Conference on Research & Development in
Information Retrieval, Gold Coast, Australia, 6–11 July 2014; pp. 1223–1226.

Wanichayapong, N.; Pruthipunyaskul, W.; Pattara-Atikom, W.; Chaovalit, P. Social-based
traffic information extraction and classification. In Proceedings of the 2011 11th International
Conference on ITS Telecommunications, St. Petersburg, Russia, 23–25 August 2011; pp.
107–112.

López Pazos, G.; Balado Frías, J.; Díaz Vilariño, L.; Arias Sánchez, P.; Scaioni, M. Pedestrian
pathfinding in urban environments: Preliminar results. In Proceedings of the Geospace 2017,
Kyiv, Ucrania, 4–6 December 2017.

Sánchez-Ávila, M.; Mouriño-García, M.A.; Fisteus, J.A.; Sánchez-Fernández, L. Detection of
Barriers to Mobility in the Smart City Using Twitter. IEEE Access 2020, 8, 168429–168438.

Congosto, M.; Basanta-Val, P.; Sanchez-Fernandez, L. T-Hoarder: A framework to process
Twitter data streams. J. Netw. Comput. Appl. 2017, 83, 28–39.

Milne, D.; Witten, I.H. An open-source toolkit for mining Wikipedia. Artif. Intell. 2013,
194, 222–239.

Puente, I.; González-Jorge, H.; Martínez-Sánchez, J.; Arias, P. Review of mobile mapping and
surveying technologies. Measurement 2013, 46, 2127–2145.

Holgado-Barco, A.; Riveiro, B.; González-Aguilera, D.; Arias, P. Automatic inventory of road
cross-sections from mobile laser scanning system. Comput. Aided Civ. Infrastruct. Eng. 2017,
32, 3–17.

Balado, J.; González, E.; Arias, P.; Castro, D. Novel approach to automatic traffic sign inventory
based on mobile mapping system data and deep learning. Remote Sens. 2020, 12, 442.

27

	Introduction
	Related Work
	System Architecture
	Implementation
	Extracting Information from OpenStreetMap
	Automation of the Data Capture Process
	Building the Network

	Network and Obstacles Detection from LiDAR Data
	Detection
	Modeling
	Integration of the LiDAR Model in the OSM Model

	Detection of Mobility Barriers Using Hardware Sensors on Mobile Devices
	Mobile Application for Data Capture
	Mobile Application Modes of Operation
	Convolutional Neural Network Model
	Model Training and Transfer
	Integration with the FLATCity System

	Detection of Mobility Barriers Using Twitter Data
	Data Capture
	Tweet Preprocessing
	Location Detector
	Validity Detector
	Integration of the Twitter Detector in the FLATCity System

	Case Study
	Experimental Setup
	Data Collection
	Route Computation
	Discussion

	Conclusions

