
Developing Web-based Geographic Information
Systems with a DSL: Proposal and Case Study

Suilen H. Alvarado, Alejandro Cortiñas, Miguel R. Luaces,
Oscar Pedreira and Angeles S. Places

Universidade da Coruña, Centro de Investigación CITIC, Laboratorio de Bases de
Datos, Facultade de Informática, Elviña s/n, 15071 A Coruña, Spain
{s.hernandez,alejandro.cortinas,luaces,
opedreira,asplaces}@udc.es

Abstract

In this paper, we present a declarative domain-specific language (DSL) for
the development of Geographic Information Systems (GIS). GIS applica-
tions manage information with a spatial component, usually in the form of
points, lines, polygons, or variants of these basic data types, in domains where
the spatial information plays a central role. They provide the user with dif-
ferent functionalities on different application domains, but they are usually
developed according to a common architecture and using a common set of
technologies. Hence, they share a significant number of elements that make
some aspects of their development quite repetitive. Our DSL allows devel-
opers to specify the entities, geographic layers, and maps of the applications
using a declarative language. Then, the specification is transformed into a
working GIS application. We present the language, its implementation, and
a case study on two sample projects that allowed us to evaluate the resulting
software, paying special attention to the savings in the development effort.

Keywords: Domain specific language; geographic information systems.

River Journal, 1–24.
c© 2020 River Publishers. All rights reserved.

2 Suilen H. Alvarado et al.

1 Introduction

Geographic information systems (GIS) manage entities with a spatial com-
ponent that plays a central role in the system’s functionalities. The spatial
component of the entities is usually represented as a point, a line, a polygon,
or a variant of these data types. An important functionality of any GIS is visu-
alizing information using maps that structure the data they show into layers.
Typical applications of GIS include logistics management, civil infrastructure
management, or guided navigation. Also, the rise of small mobile devices
with geolocation capabilities has broadened the application range of GIS.

The application domain determines the functionalities and data model of
each GIS. For example, guided navigation may be mandatory in a logistics
software, but irrelevant in other domains. Despite the functional differences
between two GIS, they all share common concepts, architecture, tools, and
technologies. Both commercial and open-source solutions for GIS are imple-
mented according to standards published by the Open Geospatial Consortium
(OGC)1. Therefore, current GIS are composed of components that can be
easily substituted. Hence, their development can be quite repetitive, at least
in the components that implement aspects that appear in many application
domains. Based on this motivation, we believe that the development of GIS
can be improved by applying model-driven engineering techniques.

Model-driven engineering (MDE) is an approach to software develop-
ment in which models play an active role beyond just describing the system
[4,16]. Models are created according to a metamodel that defines the elements
that can be used to describe the system. The models can be transformed into
models at lower levels of abstraction, or into source code, according to a
set of transformation rules. A domain-specific language (DSL) is based on a
similar idea. Instead of specifying the system through a model, we specify it
using a high-level language that directly supports the main elements of the
application domain. These approaches lead to a reduction of the development
effort and the number of errors introduced in the implementation since part
of the source code is generated automatically.

In this article, we present GIS-DSL, a domain-specific language for the
development of GIS. GIS-DSL is a declarative language that allows the de-
veloper to define the entities, relationships, maps, and layers of the system.
According to this specification, a software tool then generates the source code
of a GIS supporting the management of all those elements. We present the
metamodel, the language, and a use example. A preliminary version of this

1 OGC: http://www.opengeospatial.org/

Developing Web-based Geographic Information Systems with a DSL 3

article was published as a conference paper in [1]. This work extends that
preliminary publication with the implementation of the GIS-DSL tool, and
a case study in which we develop two sample applications to analyze the
resulting software products.

The rest of the article is structured as follows: in Section 2 we review
background and related work. In Section 3 we present GIS-DSL, including
an analysis of the architecture and main components of a GIS, the metamodel,
the language, and a use example. Section 4 details the implementation of the
tool that allows us to transform a system specification in GIS-DSL into source
code. Section 5 presents a case study on two sample applications. Finally,
Section 6 presents the conclusions of the paper and lines for future work.

2 Background and Related Work

Model-driven engineering is a software development approach that promotes
the use of models as active artifacts in all stages of software development. In
MDE, high-level models are automatically transformed into models at lower
levels of abstraction, and finally, into the source code of the system (or part
of). The goal of this paradigm is to produce software following an approach
similar to that of other traditional industries. One of the approaches within
MDE is model-driven development (MDD) [4], which defines models as the
main artifact for modeling software systems at a level of abstraction higher
than the allowed by programming languages. The goal of this approach is to
increase the levels of automation, quality, and productivity.

A standard defined by the Object Management Group (OMG)2 on its
particular vision of MDD is the model-driven architecture (MDA)3 [16],
structured into four layers: CIM (computational independent models), PIM
(platform-independent models), PSM (platform-specific models), and ISM
(implementation-specific model). These models can be defined using general-
purpose modeling languages, such as UML, or domain-specific languages.

A domain-specific language is a high-level language designed for soft-
ware development in a specific application domain. The difference between a
DSL and a general-purpose programming language is that a DSL allows us to
work directly with domain-specific concepts and constructs, which leads to a
greater expressiveness [7,8,15]. Although implementing a DSL can require a

2 OMG: http://www.omg.org
3 MDA: http://www.omg.org/mda

4 Suilen H. Alvarado et al.

significant effort, their main benefit is that they allow us to specify/implement
a system with significantly less effort.

A wide variety of DSL have been developed in different domains. For
example, in software engineering, DSLs have been proposed to support the
process of generating source code for desktop-based database applications
in Java [14], or to model performance tests for web applications [3]. The
systematic mapping presented in [11] highlights some open lines of DSL
research. For example, this mapping revealed that most articles focus on the
design and implementation of DSLs, but few of them considered aspects such
as validation and usability evaluation, domain analysis, or maintenance.

In previous works [5,6], we explored the automated development of GIS
through a combination of software product line (SPL) technologies and basic
MDE techniques applied to the generation of the database and data model.
Our platform allowed the user to define the data model of the system, and
to specify a selection of optional features that could be included in the final
system. In this article, we further explore the application of MDE techniques
for the development of web-based GIS through the definition of a DSL that
considers the definition of the domain geospatial entities, and also how they
will be visualized in the web.

The application of MDE techniques to GIS development has been ex-
plored in previous works. For example, [13] and [18] presented an UML
profile to support GIS-related concepts in UML conceptual models. Later, [9]
presented a work in which that UML profile was used in a MDA architecture
to generate the SQL code for the creation of spatial databases. Many GIS stan-
dards (such as those from ISO, OGC, and the INSPIRE4 initiative) include
metamodels that cover different concepts and application areas. Kutzner [12]
addressed the model-driven transformation of geospatial data according to
different metamodels that can present differences between them.

3 A Domain-specific Language for Web GIS

Although some GIS applications are developed for desktop, the web has
become the preferred choice. The ISO and the OGC have defined a set of
evolving standards that define most of the aspects for the GIS domain, includ-
ing models, procedures, services, and architectures. We can see the focus on

4 http://inspire.ec.europa.eu

http://inspire.ec.europa.eu

Developing Web-based Geographic Information Systems with a DSL 5

Figure 1 Supported data types for our metamodel of web-based GIS.

the web in these standards since many network-based services were defined,
such as the web map service5 (WMS) or the web feature service6 (WFS).

In this section, we present a DSL for web-based GIS. Its main character-
istics are: (i) it allows the developer to specify the entities to be managed and
how they will be visualized in the web through layers and maps, (ii) it is a
declarative language, that is, the developer specifies the entities of the system
and how the data will be visualized, without having to implement any details
related to these features.

3.1 GIS Architecture and Main Constructs

A GIS manages entities with spatial properties such as points, line-strings,
and polygons. A Point is defined by its latitude and longitude and repre-
sents a position in the space. A LineString is a set of joined points, and it
is commonly used to represent objects such as roads or pipes, for example.
Polygons are used to represent areas, such as divisions of the territory. In some
cases, we need to work with collections of these basic spatial types. These
collections are supported by the data types MultiPoint, MultiLineString, and
MultiPolygon. The Geometry data type is a superclass of all these types. Fig-
ure 1 shows the data types supported in the metamodel of our DSL, which
includes common data types (numbers, Booleans, strings, and dates) and the
spatial data types we have mentioned.

5 http://www.opengeospatial.org/standards/wms
6 http://www.opengeospatial.org/standards/wfs

http://www.opengeospatial.org/standards/wms
http://www.opengeospatial.org/standards/wfs

6 Suilen H. Alvarado et al.

The GIS domain is large and other data types exist. The standards by ISO,
OGC, and INSPIRE include a large number of metamodels. Previous works
addressed GIS metamodeling too. For example, the UML profile presented
in [13] and [18] includes data types to represent networks and other spa-
tial phenomena. In [12], Kutzner addressed the model-driven transformation
of geospatial data according to different metamodels. We have decided to
include only the basic spatial data types in our metamodel as we believe
they are the most common to any GIS application, and the purpose of the
metamodel is to serve as the basis for the design of a DSL that will allow
to automatically generate base functional applications that can manage entity
types with a spatial component. However, both the metamodel and the DSL
we present could be easily extended with other data types and constructs.

Spatial properties need to be defined within a spatial reference system
(SRS) that defines the map projection used by some spatial data or by a map
viewer. Using a specific SRS is required to transform coordinates into the
actual position of an object. Depending on the spatial context for which a
GIS is built, we may prefer to use one SRS or another.

Spatial data types and operations are supported by specific tools and tech-
nologies that comply with the GIS standards.There are relational database
extensions that handle GIS features, such as PostGIS7 or Oracle Spatial8. At
higher levels, there are Java libraries to work with spatial data, such as the
Java Topology Suite (JTS) or the library collection Java GeoTools. We can
handle spatial data in JavaScript with GeoJSON and libraries such as Turf.
The view layer is built with the help of tools such as OpenLayers or Leaflet.

The visualization of geospatial data involves three concepts: layers,
styles, and maps. A layer is an image that can be geographically bounded.
This image can be composed of a set of real photos, as in the case of a
satellite view, or it can be generated from geographic data by applying a
given style. When a layer is loaded in a map viewer, the viewer is responsible
for asking the specific image needed depending on the bounds of the view,
using a specification such as TileLayer or WMS. In some cases the image
is generated by the map viewer itself when we are dealing with raw data
loaded with GeoJSON documents. The styles determine how the data behind
a layer is transformed into images. Depending on the type of layer, we have
different style specifications. For example, styles are usually not necessary
for satellite images. If we are handling a WMS layer we need to use a style

7 https://postgis.net/
8 https://www.oracle.com/database/technologies/spatialandgraph.html

https://postgis.net/
https://www.oracle.com/database/technologies/spatialandgraph.html

Developing Web-based Geographic Information Systems with a DSL 7

Figure 2 A metamodel of web-based GIS (reduced version, adapted from [1]).

layer descriptor (SLD). A map is composed of a set of layers with their
styles rendered in a particular order. Usually the layers are generated from
data of the application itself, that is, from entities with spatial properties. For
example, we can have a layer of the traffic lights of a city, or a layer that
shows the roads of a region. The metamodel presented in Figure 2 formalizes
these concepts and how they relate to each other.

Figure 3 shows our architecture for a web-based GIS. The server side
provides two services for the clients: a REST service handles most of the
alphanumeric data and can provide geographic data in a serializable format
(such as GeoJSON), and a WMS that provides cartography images by using
a map server. Both the data and cartography services are fed from the same
database. In the client side, the data layer is the component in charge of
handling the REST communication, the logic of the application is handled
by JavaScript code, and the templates are created using HTML. There is also
a map viewer library that is working as a closed component and that can
handle direct communication with the WMS.

In the current implementation of GIS-DSL, we aim at generating GIS
applications according to a specific architecture and a set of technologies.
Therefore, we have not followed the complete MDA architecture, since we
transform the specifications of the DSL directly into code. However, the DSL

8 Suilen H. Alvarado et al.

Figure 3 Typical architecture of a web-based GIS (reproduced from [1]).

would still be valid if we were interested into a MDA-based implementation,
able to generate applications for different platforms.

3.2 GIS-DSL

GIS-DSL is a declarative language composed of sentences that allow pro-
grammers to specify the entities, maps, and layers they need, without needing
to specify any detail on how to implement them or the control flow associated
to their processing [7, 19].

The specification of an application starts with the sentence CREATE GIS.
We specify the name of the project, and the spatial reference system that will
be used (each reference system is defined by a specific id, srid).
CREATE GIS name USING srid;

Listing 1 CREATE GIS sentence.

The domain can be specified using the sentence CREATE ENTITY (see
Listing 2). Each entity has a name and a set of properties. A property is
defined by its name and its data type, which can be any of the types shown in
Figure 1. Each entity must have an identifier, defined by adding the keyword
IDENTIFIER to the properties that compose it. Relationships between entities

Developing Web-based Geographic Information Systems with a DSL 9

can be defined as well, indicating the name of the relationship, its cardinally,
and its navigability.
CREATE ENTITY entityName (

propertyName1 dataType1 [IDENTIFIER] [REQUIRED] [DISPLAY_STRING] [UNIQUE],

propertyName2 dataType2 [IDENTIFIER] [REQUIRED] [DISPLAY_STRING] [UNIQUE],

...

relationshipName1 entityName RELATIONSHIP{ (

{ 0..1 | 1..1 | 0..* | 1..* },

{ 0..1 | 1..1 | 0..* | 1..* }

) [BIDIRECTIONAL] | MAPPED_BY relationshipNameInTheOtherEntity },

...

);

Listing 2 CREATE ENTITY sentence.

Once the domain model of the system has been defined, we can define the
layers available to be visualized in the map viewers of the application (see
Listing 3). The CREATE LAYER sentence allows us to create three different
types of layers: Tile Layers, WMS Layers, and GeoJSON Layers. Tile layers
are defined by an external URL, and they are used normally as base layers.
GeoJSON layers are generated from an entity of the application, which is
loaded into the map from the REST service applying a certain style. Entities
loaded using this type of layers can be editable using the forms of the appli-
cation. Finally, WMS layers are loaded as cartography through a map server,
and they can be generated from one or several entities from the application.
CREATE TILE LAYER name [AS label] (

url STRING

);

CREATE GEOJSON LAYER name [AS label] (

entity [EDITABLE],

fillColor HEX,

strokeColor HEX,

fillOpacity FLOAT,

strokeOpacity FLOAT

);

CREATE WMS_STYLE name (

styleLayerDescriptor FILE_PATH

);

CREATE WMS LAYER name [AS label] (

entity1 WMS_STYLE,

entity2 WMS_STYLE,

...

);

Listing 3 CREATE LAYER sentence

10 Suilen H. Alvarado et al.

Figure 4 Data model of the example application (reproduced from [1]).

The CREATE MAP sentence allows us to define the map viewers (see List-
ing 4). A map is composed of a set of layers, with one of them acting as the
base layer. A layer can be defined as hidden by default in the view.
CREATE [SORTABLE] MAP name [AS label] (

layer1 [IS_BASE_LAYER] [HIDDEN],

layer2 [IS_BASE_LAYER] [HIDDEN],

...

);

Listing 4 CREATE MAP sentence.

Finally, the sentence GENERATE GIS transforms all the specifications
made with previous sentences into the source code of a working system. The
resulting GIS provides the users with forms and listings to create, edit, list,
and remove any of the entities defined in the data model. The map viewer also
includes all the layers, styles, and maps defined. The resulting system may be
missing complex functionalities required by the users. It must be noticed that
the purpose of the DSL is not to generate a complete system with arbitrar-
ily complex functionalities but to generate a functional system that can be
extended with more complex functions implemented in the general-purpose
programming language.
GENERATE GIS name;

Listing 5 GENERATE GIS sentence.

3.3 Use Example

To illustrate the use of the DSL, we present an example with a basic GIS
application. Local administrations usually need to manage a set of buildings

Developing Web-based Geographic Information Systems with a DSL 11

with different functions, such as water distribution buildings (pipes, wells,
tanks, chlorination stations, etc.), road networks (streets, municipal roads,
bridges, etc.), cultural-related buildings (schools, sport halls, community cen-
tres, etc.), or administrative buildings. Most applications managing this kind
of data use GIS technologies, allowing the users to visualize the information
through map viewers and to digitize new elements.

Figure 4 shows a data model that specifies that we manage munic-
ipalities, roads, and administrative offices, each one with its geographic
component (a multi-polygon for municipalities, a multi-line for roads, and
a point for administrative offices) and with their relationships. Listing 6
shows the GIS-DSL code that specifies the web-based GIS application that
manages that application model. First, a new GIS is created. We use the
SRID EPSG:25829, which is a local reference system commonly used when
working in the north-west of Spain.

Next, we define the application model, creating its three entities. The
names of the entities will be used afterward for defining the different layers
that will be provided by the application. These layers are also linked to the
only map viewer we define, in which it will appear a TileLayer from Open
Street Maps (OSM) that works as the base layer, a WMS Layer that combines
both the municipalities and the roads, and a GeoJSON Layer with the admin-
istration offices. The latter also allows accessing a form directly from the map
viewer so the offices can be edited. Finally, the GIS application is generated,
with forms, listings, and maps to manage the entities.
CREATE GIS local_administration_manager

USING 25829;

CREATE ENTITY Road (

id Long IDENTIFIER DISPLAY_STRING,

status String,

path MultiLineString

);

CREATE ENTITY Municipality (

id Long IDENTIFIER,

name String REQUIRED DISPLAY_STRING,

extension MultiPolygon,

roads Road RELATIONSHIP(1..1, 0..*),

offices AdministrativeOffice

RELATIONSHIP(1..1, 0..*) BIDIRECTIONAL

);

CREATE ENTITY AdministrativeOffice (

id Long IDENTIFIER DISPLAY_STRING,

status String,

location Point,

municipality Municipality RELATIONSHIP

MAPPED_BY offices

);

CREATE TILE LAYER base AS "Base Layer" (

url "https://{s}.tile.osm.org/

{z}/{x}/{y}.png"

);

CREATE GEOJSON LAYER offices AS

"Administrative Offices" (

AdministrativeOffice EDITABLE,

fillColor #243452,

strokeColor #eeeee3,

fillOpacity 0.8,

strokeOpacity 0.9

);

CREATE WMS STYLE BasePolygonStyle (

styleLayerDescriptor

"/home/user/sld/file_polygon_sld.xml"

12 Suilen H. Alvarado et al.

System
specification in

GIS-DSL
Parser

System
specification in

code generation
engine JSON

Code generation
engine

System code
(Java, Js, HTML, …)

Base application
+

Code templates

GIS-DSL tool

Figure 5 Architecture of the GIS-DSL code generation engine.

);

CREATE WMS STYLE BaseLineStyle (

styleLayerDescriptor

"/home/user/sld/file_line_sld.xml"

);

CREATE WMS LAYER defaultOverlay AS

"Overlay" (

Municipality BasePolygonStyle,

Road BaseLineStyle

);

CREATE SORTABLE MAP theMap AS "Map Viewer"

(

base IS_BASE_LAYER,

defaultOverlay,

offices HIDDEN

);

GENERATE GIS local_administration_manager;

Listing 6 Example of application defined by the DSL.

4 Implementation of the DSL

The implementation of GIS-DSL is based on the use of the generation engine
presented in [5]. This engine receives an input consisting of a specification of
classes, relationships, and other auxiliary elements, which is processed and
combined with a set of templates to generate source code applying scaffolding
technologies.

Figure 5 presents a diagram with the architecture of our tool.The input is
a file containing the specification of the GIS application using the DSL. This
specification is first processed by a parser, which reads all its elements and
transforms it into an intermediate specification in JSON, which is the input for
the generation engine. The intermediate specification is then processed by the
code generation engine and combined with a set of templates to generate the
source code of the final system, which includes files in different programming
languages, such as Java, JavaScript, and HTML. The code templates are part

Developing Web-based Geographic Information Systems with a DSL 13

of a base application that also contains other source code that will form part
of any application generated by our tool.

4.1 GIS-DSL Parser

The parser was implemented with ANTLR9. Besides producing the parser
that can read, validate, and process the language, it provides easy mechanisms
to run native code as the grammar rules are processed.

Listing 7 shows the GIS-DSL grammar, omitting the definition of the
lexer. Every token that finishes with the suffix SYMBOL corresponds to the
text that comes before the underscore. For example, SORTABLE SYMBOL is
the word SORTABLE, and MAP SYMBOL is the word MAP. The symbols OPAR,
CPAR and SCOL are “(”, “)”, and “;”, respectively.
parse: sentence+;

sentence: createStatement | useGIS |

generateGIS;

createStatement:

CREATE_SYMBOL (

createGIS | createEntity | createLayer

)

;

createGIS:

GIS_SYMBOL identifier USING_SYMBOL srid

SCOL_SYMBOL

;

createEntity:

ENTITY_SYMBOL identifier OPAR_SYMBOL

property (COMMA_SYMBOL property)*

CPAR_SYMBOL SCOL_SYMBOL

;

createLayer: createTileLayer |

createGeoJSONLayer | createWmsStyle |

createWmsLayer | createMap |

createSortableMap;

createTileLayer:

TILE_SYMBOL LAYER_SYMBOL identifier

(AS_SYMBOL text)? OPAR_SYMBOL

URL_SYMBOL text

CPAR_SYMBOL SCOL_SYMBOL;

createGeoJSONLayer:

GEOJSON_SYMBOL LAYER_SYMBOL identifier

(AS_SYMBOL text)? OPAR_SYMBOL

identifier (EDITABLE_SYMBOL)?

COMMA_SYMBOL

FILL_COLOR_SYMBOL hexColor COMMA_SYMBOL

STROKE_COLOR_SYMBOL hexColor

COMMA_SYMBOL

FILL_OPACITY_SYMBOL floatNumber

COMMA_SYMBOL

STROKE_OPACITY_SYMBOL floatNumber

CPAR_SYMBOL SCOL_SYMBOL;

createWmsStyle:

WMS_SYMBOL STYLE_SYMBOL identifier

OPAR_SYMBOL

SLD_SYMBOL text

CPAR_SYMBOL SCOL_SYMBOL;

createWmsLayer:

WMS_SYMBOL LAYER_SYMBOL identifier

(AS_SYMBOL text)? OPAR_SYMBOL

wmsSubLayer (COMMA_SYMBOL wmsSubLayer)*

CPAR_SYMBOL SCOL_SYMBOL;

wmsSubLayer: identifier identifier;

createSortableMap: SORTABLE_SYMBOL

createMap;

useGIS: USE_SYMBOL GIS_SYMBOL identifier

SCOL_SYMBOL;

createMap:

MAP_SYMBOL identifier (AS_SYMBOL text)?

OPAR_SYMBOL

9 ANTLR: https://www.antlr.org/

https://www.antlr.org/

14 Suilen H. Alvarado et al.

mapLayer (COMMA_SYMBOL mapLayer)*

CPAR_SYMBOL SCOL_SYMBOL;

mapLayer: identifier

(IS_BASE_LAYER_SYMBOL)?

(HIDDEN_SYMBOL)?;

generateGIS: GENERATE_SYMBOL GIS_SYMBOL

identifier SCOL_SYMBOL;

property: propertyDefinition |

relationshipDefinition;

propertyDefinition:

identifier TYPE (

IDENTIFIER_SYMBOL

| DISPLAYSTRING_SYMBOL

| REQUIRED_SYMBOL

| UNIQUE_SYMBOL

)*

;

relationshipDefinition:

ownedRelationshipDefinition |

mappedRelationshipDefinition;

mappedRelationshipDefinition:

identifier identifier

RELATIONSHIP_SYMBOL MAPPEDBY_SYMBOL

identifier;

ownedRelationshipDefinition:

identifier identifier

RELATIONSHIP_SYMBOL OPAR_SYMBOL

cardinality COMMA_SYMBOL cardinality

CPAR_SYMBOL BIDIRECTIONAL_SYMBOL?;

cardinality:

ZERO_ONE_SYMBOL

| ONE_ONE_SYMBOL

| ZERO_MANY_SYMBOL

| ONE_MANY_SYMBOL

;

srid: INT_NUMBER;

identifier: IDENTIFIER;

text: QUOTED_TEXT;

hexColor: HEX_COLOR;

floatNumber: FLOAT_NUMBER;

Listing 7 GIS-DSL grammar.

As an example, Listing 8 shows the specification of an entity Administra-
tiveOffice. The parser transforms this specification into an intermediate JSON
file, shown in Listing 9.
CREATE ENTITY AdministrativeOffice (

id Long IDENTIFIER DISPLAY_STRING,

status String,

location Point,

municipality Municipality RELATIONSHIP MAPPED_BY offices

);

Listing 8 Specification of AdministrativeOffice in GIS-DSL.

{
"name": "AdministrativeOffice",

"properties": [{
"name": "id",

"class": "Long (autoinc)",

"pk": true,

"required": true,

"unique": true

},{
"name": "status", "class": "String"

},{
"name": "location", "class": "Point"

},{
"name": "municipality",

Developing Web-based Geographic Information Systems with a DSL 15

"class": "Municipality",

"owner": true,

"bidirectional": "offices",

"multiple": false,

"required": true

}],
"displayString": "$id"

}

Listing 9 Specification of AdministrativeOffice in JSON.

4.2 Code Generation Engine

The generation engine10 used in our tool has been previously designed and
developed to generate code from a system definition using a set of annotated
code templates [5]. The generation engine has been designed to simultane-
ously support concepts from software product lines engineering (SPLE) and
model-driven engineering (MDE). From SPLE, it supports feature models
to manage the variability of the products that can be generated. A feature
model, briefly explained, is a way to organize and describe the characteristics
or functionalities that appear in a family of products [10]. There are a set
of operations related to feature models [2], mostly used to determine if a
particular configuration for a new product of the family is valid. From MDE,
our generation engine uses scaffolding techniques to transform models and
text into text, that is, system specifications and annotated code templates are
transformed into the final source code of the system.

4.3 Generated Code

Figure 6 shows the structure of the low-level software elements generated
by our tool for each element in the input specification, and the relationships
between these components. The components belong to each one of the layers
of our architecture, and they are implemented in different languages: Java,
JavaScript, JSON, and HTML. On the server side, the data persistence is
implemented with PostGIS and JPA (Hibernate specifically), so for each
entity, we generate a class representing the entity, Entity, and a DAO,
EntityRepository. Besides that, the data is provided by a REST service,
so we generate a RESTController for each entity, EntityResource. On the
client side, we can differentiate two types of visualization: lists and forms. For
the former, we generate a component, entityList, with its controller and

10 spl-js-engine: https://github.com/AlexCortinas/spl-js-engine

https://github.com/AlexCortinas/spl-js-engine

16 Suilen H. Alvarado et al.

Figure 6 Low-level components of the generated source code.

router definition (JS), and with the view (HTML). For the latter, we need two
different components: one for the detail view, entityForm-detail, and one
for the edition view, entityForm-update, each one of them with the con-
troller (JS), router definition (JS) and the view (HTML). The rest of the files
generated for each entity on the client side handle the communication with
the REST service, entity.resource, and the message internationalization
files, in JSON format.

On the other hand, each map defined in the specification only generates
one file, a JSON that indicates the configuration of the different layers of the
map. The component that renders the map takes this file and dynamically
generates every layer, applies the required styles and configures the different
options of the map, such as allowing to sort the layers.

Developing Web-based Geographic Information Systems with a DSL 17

Figure 7 Class diagram of the first example project.

5 Case Study and Evaluation

In this section, we present a case study on the use of GIS-DSL that allowed
us to evaluate the language and its implementation, focusing on the size
and characteristics of the generated products, which have a direct impact
on the development effort. We used two sample projects of different sizes.
Each sample project is characterized by its number of entities, properties,
relationships, maps, and layers since these are the elements that define the
size of the system and the ones we can specify with the DSL. For both of
them, we analyzed the resulting GIS application in terms of the total number
of source code files, and the number of generated lines of code.

In the rest of this section, we describe the sample projects and their
models. We then compare the results obtained in the generated products and
discuss the findings in these results, and the limitations of the case study.

5.1 Sample Project 1: Points of Interest

Figure 7 shows a class diagram that defines the first sample project. In this
case we are defining a simple application with just four entity types that will
allow storing data of cities, defined spatially by a multi-polygon that defines
the city boundaries. Each City has a collection of Streets, defined spatially by
a multi-line. Also, the system will allow storing Points of interest that belong
to a given Point type and are spatially defined by a point.

18 Suilen H. Alvarado et al.

The two colors in the diagram identify the two maps that we want to
define. The first one (orange background) will show the streets in the cities
using a WMS layer, applying a style that depends on the type property of each
street. The second map (purple background) will show the points of interest
of the city in a GeoJSON layer. Using a GeoJSON layer is useful if we want
to facilitate the edition of the elements of the layer since the users can access
the edition form from a popup that shows clicking on an element of the map.

5.2 Sample Project 2: Local Civil Infrastructure Management

A typical problem for many public administrations is civil infrastructure
management. The list of elements to manage is large but, to keep the ex-
ample within a reasonable scope, we decided to focus on five areas: urban
planning, road management, population information, medical facilities, and
water supply facilities. Figure 8 shows a class diagram that defines the second
sample project (as in the previous example, the background colors indicate
the entities that will be shown together in a map):

• Urban planning (orange background): local administrations in Spain
must define an urban plan that structures the territory of the munici-
pality into areas with different construction permissions. In this way,
the administration establishes the types of buildings that can be built
in each zone. This information is kept in the system with the entities
UrbanPlan (since a municipality can define many urban plans over time)
and UrbanPlanZone, defined spatially with a multi-polygon.
• Road management (purple background): our system will store the in-

formation of the Roads and their Road sections. Each road section is
defined spatially by its route (a multi-line string) and its surface (a
multi-polygon), which can be also of interest in many cases.
• Population information (yellow background): demography is an im-

portant aspect of municipal administration. The PopulationEntity class
represents the partition of each municipality into lower-level entities
with their boundaries represented with a multi-polygon and storing the
population that lives in the entity without living in a population settle-
ment (i.e., outside cities, towns or villages). The PopulationSettlement
class represents the settlements withing each population entity using a
multi-polygon for the boundary and storing the number of inhabitants.
• Medical and social facilities (green background): our system will allow

storing information of medical and social buildings, such as Hospitals,
Medical centers (both defined spatially by a point), and Social centers

Developing Web-based Geographic Information Systems with a DSL 19

Figure 8 Class diagram of the second example project.

20 Suilen H. Alvarado et al.

Figure 9 Example of a map defined for the product described in Section 5.2.

(in this case, defined by two multi-polygons defining the area of the
building and the surrounding parcel respectively).
• Water supply network (red background): the water supply network is

defined by a set of nodes, that typically include water Collection and
Storage locations, Purification and Pumping premises, and a set of
edges, the SupplyPipes. The nodes are defined spatially by points, and
the pipes are defined by multi-line strings.

In this example we defined 15 layers, where 14 of them correspond to
the entities with an spatial component (that is, all entities except UrbanPlan),
and an additional layer used to include the roads in the rest of the maps. In
Figure 9 we show a capture of the application on the map “Urban planning”,
which includes a base layer from OpenStreetMap and 4 layers from our data
(entities Municipality, Building, RoadSection and UrbanPlanZone).

5.3 Results

In this section, we present the results of the analysis of the results obtained
in the two sample projects. For each project, we wrote the system specifica-
tion in GIS-DSL and generated the applications. In the previous section, we
explained that the software is generated from a set of code templates and a
base application, that comprises 175 files (Java, HTML, and JavaScript), and
13,569 lines of code. For both projects, we measured the number of source
code files and the number of lines of code (LOC). In the case of the lines

Developing Web-based Geographic Information Systems with a DSL 21

Table 1 Characteristics of each example project.

Project Entities Properties Relationships Maps Layers

Project 1 4 12 3 2 4
Project 2 16 82 15 5 15

Table 2 Characteristics of the generated software for each example project.

Project Files
Lines of code (LOC)

Total Generated Back-end Front-end

Project 1 78 17,673 4,104 10,113 7,560
Project 2 273 29,573 16,004 13,988 15,585

of code, we distinguished between the total number of lines and the newly
generated lines of code. We also distinguished between the number of LOC
in the back-end and the front-end.

Table 1 shows the characteristics of the two sample projects in terms of
the number of entities, properties, relationships, maps, and layers. Table 2
shows the size of the resulting generated projects, in terms of the number of
files and the number of lines of code (LOC).

As we can see in the tables, the differences between the two sample
projects allow us to analyze the results of the code generation process in
different settings. In both cases, we can see that the number of LOC is similar
in the back-end. However, the number of LOC in the front-end is much higher
in project 2 because it contains more maps and layers. In the case of project
1, the number of generated LOC is small compared to the number of lines of
the base application. However, in project 2, with just 16 entities, the number
of generated LOC is considerably higher. We can see also that the number of
generated LOC per entity is almost the same in both projects, 1,026 in project
1, and around 1,000 in project 2.

A potential limitation of this case study is that its extent does not allow
us to conclude that this ratio would be the same in any other project since
the number of generated lines of code is also influenced by the number of
properties, relationships, maps, and layers. However, it gives us an idea of
the code generation ratio we can achieve, and of the savings we could obtain
in larger projects, with tens or hundreds of entities. In addition, these data
could be combined with the average cost per hour at a given company to
compute the savings directly in economic terms. Therefore, these data give
us an insight on the improvements in development productivity.

22 Suilen H. Alvarado et al.

Other aspects that can be analyzed on the generated code are its quality
and maintainability. The code generated by our implementation follows a
clear architecture and a set of design patters, without any possible deviation
from those prescriptions because of the fact that is generated automatically.

A more extensive experimental evaluation remains as future work. Using
the DSL to generate existing real applications would imply additional coding
on top of the generated applications. That would allow us to evaluate the
savings and productivity improvements more accurately and, also, it would
allow us to analyze the break-even point. In addition, it would also allow us to
better evaluate the quality of the generated code compared to that of custom-
developed applications and its maintainability, according to models based on
the family of norms ISO 25.000, such as [17], and even the satisfaction level
of programmers using the DSL and users of the resulting software.

6 Conclusions

A GIS manages entities with a spatial component that plays a central role in
the system and its functionalities. Most GIS share a common set of concepts,
architecture, design patterns, and technologies, so their development is quite
similar in many aspects. Therefore, we consider that GIS is a suitable domain
for applying model-driven engineering techniques.

In this article, we have proposed GIS-DSL, a declarative domain-specific
language for the development of GIS. This language allows the developer
to specify the system by defining its entities, with their properties and re-
lationships, maps, and layers. We have implemented the DSL in a tool that
generates the source code of the system from the specification in GIS-DSL.
Although the current implementation generates applications written in Java,
HTML, and JavaScript, it could easily be modified to generate applications
in another programming languages and platforms, just replacing the base
application and the code templates.

As it happens in many applications of MDE, the purpose of GIS-DSL and
the tool that implements the language is not being able to implement every
functionality of any specific GIS, but to implement the basic management
functions on the defined entities, and the visualization based on the layers
and maps defined by the developer. Therefore, in most cases, the result-
ing software product will have to be completed to match all the functional
requirements of the domain.

We have presented a case study in which we used two sample projects to
evaluate the software products generated from the specifications in GIS-DSL.

Developing Web-based Geographic Information Systems with a DSL 23

In particular, the first sample project is a simple application for managing
points of interest (with four entities), and the second sample project is an
application for managing civil infrastructures (roads, water supply networks,
urban planning, population information, and medical and social facilities).
These sample projects are of different sizes, which allowed us to analyze the
lines of code generated in different scenarios, also taking into account the
number of lines of code that form the base application. A limitation of the
case study is the choice of technologies, architecture, and implementation
decisions we have made, which could be different in other settings. However,
it allowed us to conclude that the number of lines of source code we can gen-
erate is high if compared with the size of the specification of the systems. As
we explained in the previous section, a more extensive evaluation, involving
the generation of real applications, remains as future work.

ACKNOWLEDGEMENTS

Partially funded by: Xunta de Galicia FEDER-UE CSI grants: ED431C
2017/58 (Grupo de Referencia Competitiva), and IN852A 2018/14 (Conec-
taPeme, project GEMA); Ministerio de Economı́a-AEI FEDER-UE grants:
Datos 4.0 (TIN2016-78011-c4-1-R), and Flatcity (TIN2016-77158-C4-3-R);
and Ministerio de Ciencia e Innovación-AEI FEDER-UE grant BIZDEVOPS
(RTI2018-098309-B-C32).

References

[1] Suilen Hernández Alvarado, Alejandro Cortiñas, Miguel R. Luaces, Oscar Pedreira, and
Ángeles Saavedra Places. A domain specific language for web-based GIS. In Procs.
of the 15th International Conference on Web Information Systems and Technologies
(WEBIST 2019), pages 462–469. ScitePress, 2019.

[2] David Benavides, Sergio Segura, and Antonio Ruiz-Cortés. Automated analysis of fea-
ture models 20 years later: A literature review. Information Systems, 35(6):615–636,
2010.

[3] Maicon Bernardino, Avelino F Zorzo, and Elder M Rodrigues. Canopus: A domain-
specific language for modeling performance testing. In Procs. of the IEEE International
Conference on Software Testing, Verification and Validation (ICST 2016), pages 157–
167. IEEE, 2016.

[4] Marco Brambilla, Jordi Cabot, and Manuel Wimmer. Model-driven software engineering
in practice. Synthesis Lectures on Software Engineering, 1(1):1–182, 2017.

[5] Alejandro Cortiñas, Miguel R Luaces, Oscar Pedreira, and Ángeles S Places. Scaffolding
and in-browser generation of web-based gis applications in a spl tool. In Procs. of the

24 Suilen H. Alvarado et al.

21st International Systems and Software Product Line Conference-Volume B, pages 46–
49. ACM, 2017.

[6] Alejandro Cortiñas, Miguel R Luaces, Oscar Pedreira, Ángeles S Places, and Jennifer
Pérez. Web-based geographic information systems sple: Domain analysis and expe-
rience report. In Procs. of the 21st International Systems and Software Product Line
Conference-Volume A, pages 190–194. ACM, 2017.

[7] Martin Fowler. Domain-specific languages. Pearson Education, 2010.
[8] Ulrich Frank. Domain-specific modeling languages: Requirements analysis and design

guidelines. In Reinhartz-Berger I., Sturm A., Clark T., Cohen S., and Bettin J., editors,
Domain Engineering. Springer, 2013.

[9] Lisboa-Filho J., Nalon F.R., Peixoto D.A., Sampaio G.B., and de Vasconcelos
Borges K.A. Domain and model driven geographic database design. In Reinhartz-Berger
I., Sturm A., Clark T., Cohen S., and Bettin J., editors, Domain Engineering. Springer,
2013.

[10] Kyo C. Kang, Sholom G. Cohen, James A. Hess, William E. Novak, and A. Spencer
Peterson. Feature-oriented domain analysis (foda) feasibility study. Technical report,
Carnegie-Mellon University - Software Engineering Institute, 1990.

[11] Tomaž Kosar, Sudev Bohra, and Marjan Mernik. Domain-specific languages: A
systematic mapping study. Information and Software Technology, 71:77–91, 2016.

[12] Tatjana Kutzner. Geospatial Data Modelling and Model-driven Transformation of
Geospatial Data based on UML Profiles. PhD thesis, Technical University of Munich,
2016.

[13] Jugurta Lisboa-Filho, Gustavo Breder Sampaio, Filipe Ribeiro Nalon, and Karla A.
de V. Borges. A uml profile for conceptual modeling in gis domain. In Procs. of DE
Workshop at International Conference on Advanced Information Systems Engineering
(CAISE 2010), pages 18–31, 2010.

[14] Steven Lolong and Achmad I Kistijantoro. Domain specific language (dsl) develop-
ment for desktop-based database application generator. In Procs. of the International
Conference on Electrical Engineering and Informatics, pages 1–6. IEEE, 2011.

[15] Marjan Mernik, Jan Heering, and Anthony M Sloane. When and how to develop domain-
specific languages. ACM Computing Surveys (CSUR), 37(4):316–344, 2005.

[16] Oscar Pastor and Juan Carlos Molina. Model-driven architecture in practice: a software
production environment based on conceptual modeling. Springer, 2007.

[17] Moisés Rodrı́guez and Mario Piattini. Software product quality evaluation using
ISO/IEC 25000. ERCIM News, 2014(99), 2014.

[18] Gustavo Breder Sampaio, Filipe Ribeiro Nalon, and Jugurta Lisboa Filho. Geoprofile
- UML profile for conceptual modeling of geographic databases. In Procs. of the 12th

International Conference on Enterprise Information Systems (ICEIS 2010), pages 409–
412, 2010.

[19] Robert W. Sebesta. Concepts of Programming Languages. Pearson, 2016.

	Introduction
	Background and Related Work
	A Domain-specific Language for Web GIS
	GIS Architecture and Main Constructs
	GIS-DSL
	Use Example

	Implementation of the DSL
	GIS-DSL Parser
	Code Generation Engine
	Generated Code

	Case Study and Evaluation
	Sample Project 1: Points of Interest
	Sample Project 2: Local Civil Infrastructure Management
	Results

	Conclusions

