
Applying Feature-Oriented Software
Development in SaaS Systems: Real Experience,

Measurements, and Findings

Oscar Pedreira1, Fernando Silva-Coira1, Ángeles Saavedra Places1,
Miguel R. Luaces1, Leticia González Folgueira2

1Universidade da Coruña, Facultade de Informtica, A Coruña, Spain
{oscar.pedreira,fernando.silva,asplaces,luaces}@udc.es
2Enxenio S.L., A Coruña
lgonzalez@enxenio.es

Abstract

Distributing software as a service (SaaS) has become a major trend for
web-based systems. However, this software distribution model poses many
challenges. One of them is feature variability, that is, some features of the
system may be required by some users, but not by all of them. In addition,
variability is more complex than just including or excluding a feature, since
different types of relationships may exist between features. The implemen-
tation of this variability, and the parametrization and configuration of the
system can be complex in this context, so the development process of a
SaaS system must adequately address variability management. In this paper
we present an experience applying feature oriented software development
(FOSD) in the context of SaaS web-based systems development. We present
a real experience in the development of a web-based system for managing
home care services for dependent people. The article describes the problem of
variability management in this domain, and the feature model of the system.
Finally, we present an empirical evaluation of the feature model of the system
based on data obtained from its real deployment after two years of use. The
empirical evaluation was based on state-of-the-art measures for variability

River Journal, 1–23.
c© 2019 River Publishers. All rights reserved.



2 Oscar Pedreira et al.

management, and revealed relevant insights for software development in this
context.

Keywords: feature oriented software development, feature oriented do-
main analysis, variability management, software as a service, feature model
metrics.

1 Introduction

Delivering software as a service (SaaS) [24] has become a major trend in
the last years. Instead of having an individual deployment of the system for
each customer, in the SaaS model the system is deployed once, and pro-
vides service for many customers that share the same software and hardware
resources. This software distribution model allows the customers to forget
about aspects such as complex software deployments, maintenance, security,
and acquiring and maintaining a hardware and network infrastructure for their
information systems. This model may also have advantages for the developer
companies, such as a greater control on the software evolution, licensing
schemes that could be more flexible and attractive for customers, and a more
effective way of commercializing the software. However, this approach also
presents important challenges for the developer companies. For example, the
provider has to manage the infrastructure needed for the service, including
premises, hardware, network, and information security. The SaaS model also
presents challenges related to the development of the software.

One of the challenges of developing SaaS systems is managing variabil-
ity. Typically most customers share a large set of features, but they need to
customize the software to their needs in some way. Typical customizations
include adding or removing functionalities, or parametrizing the software so
its behavior changes to adapt to a particular customer need. This configuration
and parametrization possibilities introduce a certain degree of variability in
the system, that depend on the number of features and how they relate to
each other. This usually results in a complex parametrization of the software,
that must be handled carefully. An adequate approach for dealing with vari-
ability analysis and modeling in SaaS systems is feature-oriented software
development.

Feature-oriented software development (FOSD) considers variability
modelling and management as one of the central aspects of software de-
velopment [2, 3, 5, 14]. A feature can be defined as a unit of functionality
that satisfies a specific requirement. FOSD assumes that some features may



Applying Feature-Oriented Software Development in SaaS Systems 3

be selected by some users in a specific configuration of the system, but not
in all of them, depending on the needs of the users/customers. In addition,
features cannot be managed just as a plain list of elements of the system,
since different types of relationships and constraints can be defined between
them. The features of the system and the relationships between them can
be represented in a feature model. The feature model of a system defines a
software product line (SPL), that is, a family of products that share a set of
core assets (components), but that may differ in the features they include.

The application of FOSD techniques to the development of SaaS sys-
tems has already been considered in previous research. For example, [19]
presented a proposal for the development of SaaS systems applying SPL
engineering techniques, where the application architecture is designed as a
composition of services, and where each service implements a specific set
of features. [16] proposed the use of variablility modelling based on meta-
graph for SaaS systems configuration and customization. [18] considered
an scenario in which the system is deployed independently for each cus-
tomer, and they proposed to use variability models to systematically derive
customization and deployment information for each individual customer.

In this paper, we present a real experience in applying variability man-
agement techniques in the development of a web-based SaaS system, more
specifically, a software for managing home care services for people with spe-
cial physical or psychological conditions. We briefly describe the domain, and
we present the complete feature model of the system, that allowed us to suc-
cessfully introduce variability and customization in the development process.
In addition, we present an empirical evaluation of the variability of the system
with data obtained after two years of system use in the real deployment. In
this empirical evaluation we analyzed data from system configurations for
more than 100 customers and thousands of users, based on state-of-the-art
metrics. The results of the empirical evaluation revealed interesting findings
regarding the use of the features in the real deployment, which raise important
considerations in the development of systems with variability.

The rest of the paper is organized as follows. Section 2 reviews back-
ground and related work. Section 3 describes some aspects of the Home
Care Service management and describes the feature model of the system.
Section 4 presents an empirical analysis of the real deployment of the system
and how the different features are being used. Finally, Section 5 presents the
conclusions, and lines for future work.



4 Oscar Pedreira et al.

Figure 1 Example of a feature model.

2 Background and Related Work

2.1 Feature Oriented Software Development

Most large software systems have a degree of variability that allows to cus-
tomize them in many ways to the needs of different customers and users.
ERPs are the paradigmatic example of this scenario, since their parametriza-
tion usually considers hundreds of parameters and plays a central role in the
deployment and adoption of the system. Research in software engineering
has developed different strategies and techniques for developing high quality
systems where a significant degree of variability is present.

Feature-oriented software development (FOSD) takes this scenario as the
context for the development of a system [3, 5]. A feature is defined in [3]
as “a unit of functionality of a software system that satisfies a requirement,
represents a design decision, and provides a potential configuration option”.
Some customers may need a feature, while others may not. Features are a way
of modelling the variability of a software system, since they may be present
only in the deployments for the customers that need them. The goal of FOSD
is to design and develop a system that can be easily tailored to the needs
of specific customers/users with low effort, while maintaining high quality
levels.

A feature model [15] represents the features of the system and the re-
lationships between them. Feature models can be graphically represented in
feature diagrams, following the notation proposed by [11]. Features can be
abstract or concrete. Some features may be mandatory while others may be
optional. For a given feature, there may be many options to implement it (and
they do not necessarily need to be exclusive). Finally, there is the possibility
of using include/exclude relationships between features. [12] introduced an
extension of the notation used in feature diagrams that considers the concept
of cardinality, as the number of times a feature can be repeated in a product.



Applying Feature-Oriented Software Development in SaaS Systems 5

Figure 1 shows an example of a feature model. The root of the tree
represents the system that is modelled, in this example, a refrigerator.
At a first sight we can distinguish between concrete features, such as
Cold water dispenser and Controllable from mobile, and abstract
features, such as Ice and Thermostat regulator. An abstract feature
may group a set of related, lower-level, features. In some cases, the chil-
dren of an abstract feature may represent alternative ways of implementing
the parent. For example, in the case of Ice, it has two children fea-
tures, Crushed ice and Ice cubes, that represent two ways of having
ice in the refrigerator. The notation used to represent the relationship be-
tween Ice and its children means that there is an Or relationship between
Crushed ice and Ice cubes. That is, we can have refrigerators dispensing
only Ice cubes, refrigerators dispensing only Crushed ice, and refrig-
erators dispensing both types of ice. Our model also represents that the
refrigerator can have a Thermostat regulator, that can be Digital or
an analogic Wheel. The relationship between Digital and Wheel with its
parent feature, Thermostat regulator, means that they are alternative.

The variability of the features defines a product family, that is, the set
of all the products that could be obtained from the set of all valid feature
specification combinations.

Feature analysis is the base for software product lines (SPL), that is, a
platform for automatically generating different versions of a product family
from a specification of the features that have to be present in the final system.
A software product line is a family of related software systems that share a
common set of assets, but differ in that some features are present in some
products, while they are not in others [2, 10, 22]. Developing each of these
systems separately would be too costly. A software product line considers
developing a platform that contains all the possible features identified in the
analysis, to generate final products from a given feature specification. Instead
of constructing related but different systems in different ways, SPLs allow
us to build a platform for automatically generating all those products, there-
fore reducing the development efforts and quality issues. However, FOSD is
not only applied in the context of software product lines. For example, [23]
connected the concepts of FOSD and model driven development (MDD).

FOSD has been previously applied to some aspects of the development
of SaaS systems, such as the system architecture [19], the variability mod-
elling [16], and the automatic generation of the configuration of individual
deployments for specific customers [18].



6 Oscar Pedreira et al.

2.2 Measures for Software Product Lines and Variability Management

Measuring feature models has been an active line of work within this re-
search area. [26] presents a comprehensive set of measures and metrics for
SPLs. Many of them depend directly on the feature model and, therefore,
could be applied to any system developed under this paradigm. [20] presents
a systematic review of quality attributes and measures for SPLs. In this
systematic review, the authors identified 165 quality measures proposed be-
tween 1996 and 2010. Those quality measures relate to 97 different quality
attributes. Among all the aspects considered in the exhaustive review in [20],
the authors classify the quality attributes in the categories of functional suit-
ability, reliability, performance efficiency, operability, security, compatibility,
maintainability, and transferability.

Measuring systems developed under a SPL or feature oriented software
development has continued being a topic of interest for the community.
For example, [25] empirically evaluated a decision model for adopting
software product lines; [1] proposes eight metrics for FOSD that consider
implementation-related aspects; [8] presented a proposal for aggregating met-
rics for feature models using fuzzy logic; and [4] presented structural metrics
to assess the maintainability of SPLs.

Recently, [13] has presented a systematic literature review on metrics for
specifically analyzing variability and its implementation in software product
lines, considering literature published up to 2018. They found 147 metrics,
from which 57 are variability model metrics. However, features are not some-
thing static once the system has been developed and deployed. Analyzing how
feature models of the systems evolve is important. Therefore, some of the
metrics compiled in [13] address measurements on data obtained from the use
of each feature in the configurations of each customer in real deployments.

In this paper we use some of those metrics for evaluating the feature
model of the system, namely: number of features (NoF) [9], coefficient of
conectivity-density (CoC) [4], depth of tree (DoT) [6, 9], number of leaf
nodes (NLeaf) [9], number of Or-feature groups [7], number of Xor-feature
groups [7], the ratio of variability (RoV) [4], and the theoretical (de-)selection
ration (TSR) [17]. Section 4 presents interesting findings from this evaluation.



Applying Feature-Oriented Software Development in SaaS Systems 7

3 Applying FOSD to a SaaS system: Home Care Service

3.1 Description of the Domain

In Spain, all city councils have to provide a home care service to dependent
people. These people are evaluated according to their medical and economic
situation by the municipal technicians, who assign them a number of weekly
hours of attention and a price to pay for them (which can range from free to a
percentage of the real cost). In general, city councils do not directly provide
this service, but they subcontract it to specialized companies. These compa-
nies have hired both assistants, who take care of the dependent users in their
homes, in the schedule and with the conditions they need, and coordinators
who organize the daily agenda of each assistant.

The management of this service is extremely complex for both companies
and city councils. On the one hand, the hourly price of the service that the city
council pays to each company depends on the conditions of the contract and
can also specify a price for different days (weekdays, weekends, holidays,
nights, etc). On the other hand, companies have to pay full salaries to their
assistants (not just the hours they worked at dependent’s homes), even when
they just can strictly charge the hours of service they actually give, which
makes it critical for them to do plannings that minimize the displacements.

In addition, there are dependents for whom it is essential to receive the
service as they depend on it to eat, to get out of bed or to have a minimum
hygiene, so they must always have an assistant at the scheduled time. How-
ever, assistants have vacations, days off and sick leave, and replacing them
sometimes requires increasing the number of work hours of other colleagues,
which is only possible within certain legal limits. Besides, dependents have
periods of hospitalization or travel to their family home which means inter-
rupting the service (and stop paying), causing gaps in the agenda of their
assistants and, if not managed, losses for companies.

In order to deal with this reality, home care service companies work with
a fundamental concept that they call the “bag of hours” of each assistant, that
is, the number of hours that each one works in a given period regarding to the
number of hours established in their contracts in such period. Managing these
data for each assistant allows the company of a home care service to auto-
matically have up-to-date and detailed information about the hours hired and
worked by their employees, in addition to other data of interest. Each bag of
hours is calculated as the difference between hours hired, and hours actually
worked (including complementary hours) or permission hours, where:



8 Oscar Pedreira et al.

Figure 2 List and geographic location of dependents in Home Care Service.

• No of hired hours is the number of hours assigned to the employee for
her/his current contract.
• No of worked hours is the number of hours actually worked by the em-

ployee. For this, the hours of the services carried out in a period of time
are added. Certain factors are also taken into account, such as absences
or services canceled at the request of a user.
• No of complementary hours is the number of overtime hours worked

beyond the time hired and they are paid separately.
• No of permission hours is the number of paid hours (permission,

holidays, public holidays, sick leave, etc) and unpaid permissions.

As a part of the monitoring they do of the service, municipalities want
to be informed of everything at any time, especially the times of arrival and
departure of each assistant to each domicile and when a dependent changes
his assistant, as frequent changes mean a low quality of service.

In order to give support to all these processes, we developed an applica-
tion that is being marketed as SaaS and is currently in use in 111 Spanish
city councils, most of them in Galicia, and 79 companies that have hired a
total of 5,649 assistants. This application offers a company profile and a city



Applying Feature-Oriented Software Development in SaaS Systems 9

Figure 3 Scheduler.

council profile to access the data of each municipality, so that the application
itself serves as a means of communication between them. The check-in in
each domicile is achieved by calls from the number of the domicile to a
special phone number of a digital switchboard and is reflected in the database
available to the city council and company. On the other hand, a mechanism
is offered so that the company can efficiently plan the organization of the
service and the scheduling of its assistants. The city council can also access
the files of the dependent users, nowadays, a total of 14,662, including which
assistant provides service to each user each day.

Figure 2 shows an screenshot of our system, that gives the complete list of
dependent users, with links to get all the information registered, with the cor-
responding map to facilitate their geolocation. Figure 3 presents the interface
that facilitates coordinators to organize the daily schedule of the assistants,
taking into account crucial parameters such as distances between users, bag
of hours, tasks to perform, etc.



10 Oscar Pedreira et al.

Although the mechanics of work are similar in all companies and mu-
nicipalities, the reality is that points of variability began to emerge from the
beginning. This is due to the fact that different companies and city councils
have different protocols of action and, logically, they wanted the management
application to support their way of working. In the generation of these data a
multitude of parameters are involved. Further, each city council and company
calculate the bag of hours differently, taking into account certain factors of
interest. Therefore, the bag of hours is a challenge due to its high complexity
and variability.

Another complex part of the system is the billing of services. The com-
pany and the city council generate invoices for the services in a certain period
of time. Therefore, it is necessary to generate both the invoice that the com-
pany charges the city council for providing the service and the invoice that
users must pay to the city council.

3.2 Description of the Feature Model

The features that allow the different clients to adapt the behavior of the soft-
ware to their needs can be grouped in features for city council, features for
the company (those that apply to the company or its assistants), and features
for each assistant.

3.2.1 City Council
The Home Care Service is intended to be used by several city councils, where
each one has different needs for daily work. Figure 4 shows the part of the
feature model representing the features available for the city councils.

The feature Report configures the language and style of the reports
exchanged between the city council and its companies. At this moment,
regarding the language, variability is defined by three alternative features:
Galician, Catalan or Spanish. Moreover, the feature Format style al-
lows us to choose the template that will be used for reports, a General style

or an Extended style, where the first one customizes the information
shown according to the type of report and the second feature uses the same
general form for all.

The optional feature Shared planning makes the schedules of users of
the municipality visible to all its companies. This feature is useful when an
assistant is off sick and an assistant of another company must take care of
his users temporarily. The city council charges users for the services pro-
vided, as we stated before, in the percentage established. The variability of



Applying Feature-Oriented Software Development in SaaS Systems 11

Figure 4 Feature Diagram: City council.



12 Oscar Pedreira et al.

this billing is defined by the feature Invoice dependents. Feature Issuer
allows city councils to invoice themselves (City council issuer) or to
delegate the invoicing to the companies (Company issuer). In addition,
users pay according to the category they belong to. The system allows to
configure invoicing for four categories (Council, Dependency, PADSS, and
Contract). For each of them, it is selected which days are consider holidays
(Holidays), these days have a special price, and how each service is charged
(Type of invoice). Those two features are described in Section 3.2.5 and
Section 3.2.6, respectively. Besides, for the category Council, the price per
hour charged (feature Price Hour) can be obtained from a scale (Scale) or
can be a custom price (Personalized).

Finally, one city council is associated with several companies. The feature
model of the feature Company is shown in Section 3.2.2.

3.2.2 Company
The feature model corresponding to an association city council-company (a
company that operates in a city council) is shown in Figure 5.

Companies design the weekly schedule of their care assistants.
Mean of transport sets the mean of transport used by workers: Walking
or Driving (this will be taken into accound during planning). The feature
Assistant scheduling allows us to configure the information that con-
tains the weekly planning that the assistants receive. In addition to showing
the days and hours of each service, some other attributes of the dependant
can be included as name and surname, telephone, register number, and the
distance from that service to the next one.

The Home Care Service implements the functionality, represented by the
feature Telephone Check in, to record the real start time and the duration of
each service through a system of telephone calls. When an assistant starts the
service in a dependents home, he/she makes a call (from the user’s telephone)
to a virtual phone number to confirm his/her entry. This process is repeated
at the end of the service. With this system, for example, companies are able
to detect absences or calculate the actual time worked of their employees.

Document language defines the current language for the internal docu-
ments of a company, that is, documents that are not visible for the city council.
There are three different options: Galician, Catalan and Spanish.

Another important feature of the Home Care Service is the
Bag of hours. The hours worked by each employee are displayed in a table,
aggregate for weeks and months. Usually, services on holidays have a greater
weight than the rest of the services. For instance, an hour worked on a holiday



Applying Feature-Oriented Software Development in SaaS Systems 13

Figure 5 Feature Diagram: Company.



14 Oscar Pedreira et al.

counts as two hours on a work day, in the bag of hours. Holidays are selected
with the feature Holidays. This feature is described in Section 3.2.5.

Companies can also invoice and charge the city councils for their
services. The configuration of this module is done under the feature
Invoice company. Due to space constraints, the corresponding sub-tree is
shown in Section 3.2.3.

3.2.3 Company Invoicing
The variability of the invoicing system is split into three main features:
Services, Invoice city council and Invoice private user. Every
month, companies charge city councils according to the total hours worked.
Services sets how to count the time to bill for each service. With
Scheduled only the planning time is considered. On the other hand, Done
takes into account the real time worked along, with the optional sub-features
Time allowed and Upper limit. For example, let us suppose the sched-
uled time is one hour and the actual time worked is 55 minutes. The
option Scheduled always charges one hour, whereas the feature Done only
computes 55 minutes.

The company invoices the corresponding city council to taking care of
their dependents. For each category (Council, Dependency, PADSS, and
Contract), the type of invoice that applies must be indicated (see section
3.2.6). The feature Validate planning activates a process that does not
allow the creation of dependent’ schedules that do not keep the restrictions
previously imposed by the city council. Round total price rounds the final
amount to an integer number (for example, 15.8 euros to 16 euros).

A company has private users that are not managed by a city coun-
cil. These users are clients of the company and it is the company that
is responsible for their management. There are two different categories
of private user represented by features Help and Private. The feature
Invoice private users allows the configuration of the invoicing for both
types of users. In addition, Holidays sets the days with a special price.

3.2.4 Care assistant
The service also manages the information of the care assistants of a company.
Figure 5 shows features relative to them under the feature Assistant.

The feature Assistant allows us to configure how the worked hours
are computed for each assistant in the bag of hours. Compute holidays

indicates that the hours worked on a holiday will have a greater weight than a
normal day. The optional feature Break time is able to assign a break time



Applying Feature-Oriented Software Development in SaaS Systems 15

Figure 6 Feature Diagram: Invoice.



16 Oscar Pedreira et al.

Figure 7 Feature Diagram: Holidays.

Figure 8 Feature Diagram: Type of Invoice.

to the assistants during their workday (for every four hours of continuous
work). Finally, Split week indicates how the hours are divided when a week
belongs to two different months. Real sets that each month is assigned their
real worked hours whereas Proportional splits the total hours of the week
proportional to the number of days of each month. For example, if the last
week of March has 35 hours worked, where the first 5 days of the week
belong to March and the 2 following days to April, 25 hours will be assigned
to March (5 hours per day and 5 days) and the remaining 10 hours to February
(5 hours per day and 2 days).

3.2.5 Holidays
Figure 7 shows the feature model of Holidays that allows to establish which
days are considered holidays for the bag of hours of care assistants, or to
calculate the amount of the invoices. Holidays are composed of public hol-
idays (Public holidays) and weekends (Weekends). In turn, a weekend is
formed by a Sunday (Sunday) and, optionally, by a Saturday (Saturday).

3.2.6 Type of invoice
The feature model of Type of invoice is shown in Figure 8.

There are two alternative ways of billing:



Applying Feature-Oriented Software Development in SaaS Systems 17

• Real: The amount of the invoice is calculated based on the real
computed time for the services of the month. If the optional feature
Upper limit is enabled, the system does not allow to charge more than
the assigned monthly hours in their planning.
• Agreement: It always charges the assigned monthly hours. If the real

computed hours are greater than the assigned hours, with the feature
Charge holiday price, the time difference is charged with a special
price (as hours o holidays).

4 Empirical Evaluation

In general, parametrized systems or software product lines are designed
thinking in user requirements and variability from an abstract point of view.
That is, the domain analysis may allow us to identify that a given feature may
be present or not for some users, or that for a certain feature the user may
need to choose among many choices of implementation.

However, it may happen that some of the features included in the system
are extensively used, while others are just used by a few customers. Evalu-
ating the usefulness of a feature is not always straightforward. The easiest
scenario would be the one in which each user is a customer, and we do not
worry about the feature cost. However, this is not always the case. As we have
seen in the previous section, a customer can generate a large number of users,
each of them choosing their own parametrization of the system. In addition,
features can not always be measured in the same way, depending on whether
they imply an OR or XOR relationship with their sub-features.

In this section we present an empirical evaluation of the system under a
set of metrics for variability obtained from [21]. More specifically, we apply
the following metrics on the feature model: number of features (NoF) [9],
coefficient of conectivity-density (CoC) [4], depth of tree (DoT) [6, 9], num-
ber of leaf nodes (NLeaf) [9], number of Or-feature groups [7], number of
Xor-feature groups [7], the ratio of variability (RoV) [4], and the theoretical
(de-)selection ration (TSR) [17]. These metrics give us information about
the feature model of the system and, more importantly, about the use of the
features of the system in real deployments.

The data used in this empirical evaluation comes from real user
configurations generated in two years of use after the system first deployment.
From its deployment, it has been commercialized to a total of 111 councils
and, 79 companies. This generated a total of 147 system configurations for
the companies, since a specific company can work for one or more city



18 Oscar Pedreira et al.

Configuration type # of users
City councils 111
Companies 147
Workers 5,649

Table 1 Number of users of each user type in the real deployment over a period of two years.

Metric Value
Number of features (NoF) 79
Number of edges 81
Coefficient of conectivity (CoC) 1.02
Depth of Tree (DoT) 8
Internal nodes 45
Leaf nodes (NLeaf) 34
Or-feature groups (NOr) 1
Xor-feature groups (NXor) 9
Ratio of variability (RoV) 1.32

Table 2 Summary of measurements on the feature model.

councils. The system is currently used by 5,469 workers to reflect the result
of their daily work. Each worker has his/her own configuration (see Table 1).

4.1 Metrics on the Feature Model

4.1.1 Metrics on the Feature Model
Table 2 summarizes basic measurements on the feature model. The number
of features (NoF), coefficient of connectivity (CoC), depth of tree, number of
leaf nodes (NLeaf), number of Xor- and Or-feature groups, and the ratio of
variability provide us with information about the complexity of the feature
model.

The model we have presented in the previous section includes a total of
79 features, structured in a tree of depth 8. From those 79 features, 34 of
them are leaf nodes. The feature model contains one Or-feature group, and 9
Xor-feature groups.

The ratio of variability (RoV) measures the average branching factor in
the feature model, that is, the average number of children per parent node in
the model. As it is defined in [21], the RoV can be obtained as follows:

RoV (fm) =
number of internal nodes

number of leaf nodes



Applying Feature-Oriented Software Development in SaaS Systems 19

Figure 9 Theoretical Selection Ratio of the feature model.

Where fm is the feature model. In the feature model we presented in the
previous section there are 45 internal nodes and 34 leaf nodes, so the ratio of
variability is RoV = 1.34, that is, each internal node has an average of 1.34
children in the feature model.

4.2 Metrics on Feature Usage

4.2.1 Theoretical (de-)selection ratio
The theoretical (de-)selection ratio is one of the most interesting we found for
evaluating the success of the system and its features in real deployments. This
ratio measures for a feature f the percentage of configurations in which it has
been selected. In our case, we computed the theoretical selection ratio, that
is, we counted how many times a feature is being used from all the possible
configurations.

TSR(f) =
number of configurations using the feature

total number of configurations

The chart shown in Figure 9 shows the theoretical selection ratio,
TSR(f), for each feature, sorting the features (X-axis) in decreasing value
of the TSR(f). The information shown in the chart is very interesting, since
we can see that some features are being used by a significant number of
customers/users in their configurations, while others are not being used at



20 Oscar Pedreira et al.

all. For example, in the case of the city councils, 19 out of 111 of them
issue the invoices themselves (feature City council issuer), and 81 of the
councils prefer to delegate the invoice issuing on the companies. Taking into
account that these two features form part of a Xor-feature group, we consider
their selection ratio normal and acceptable. However, other features, such as
Round margin, Done, and Upper limit are not used at all, which questions
if they should have been incorporated into the system or not.

Incorporating a new feature to the system has a cost, that can be higher
or lower depending on the complexity of the feature. Therefore, making the
decision of adding a feature should be based in the potential value it will add
to the product. In the results we obtained from the empirical evaluation of the
system we can see that 48% of the features have a selection ratio below 0.2, a
36% of the features have a selection ratio below 0.1, and 18% of the features
have not yet been used in any configuration of the system.

Incorporating a feature to the system not only affects the cost of devel-
opment and the system’s value, but also the complexity of the system. A
feature adds complexity to both the implementation, to the parametrization
interfaces, and to the deployments for new customers. The TSR could be used
before incorporating a new feature to make the decision, based on market
research information.

As we introduced in the previous sub-section, the decision of incorporat-
ing a given feature to the system is based on its cost, and on a perspective
of its contribution to selling the system, that is directly reflected on its usage
ration TSR(f).

We can define a new metric to compare features based on their cost and
their real usage, the feature worthiness:

W (F ) =
COST (f)

TSR(f)

Using this metric, the cost of each feature is inversely weighted by its
usage in real deployments.

5 Conclusions

In this paper we have presented a real experience on using variability man-
agement to analyze and model the variability in a complex real web system
delivered as a service. Applying variability management has allowed the
developers to analyze the features of the system under a solid framework,



Applying Feature-Oriented Software Development in SaaS Systems 21

and in a systematic and comprehensive way. This approach has allowed the
development team to deal with variation in an easy and natural way.

In addition to presenting the system and the feature model we have identi-
fied during its development, we have presented real data on the deployment of
the system and the use of the features introduced in the system by the different
user profiles it supports (councils, companies, and auxiliar assistants). In this
analysis we have found interesting results regarding the use of the features.
Some of them are considered by the company that developed the system as
worthwhile or profitable, since many customers use of the options and also
many users use the other options for that feature. However, the data also re-
flect that some features have been developed only for the specific need of one
specific customer, so they are considered by the company that developed the
system as less profitable. In addition, while dependencies had not been found
during the variability analysis, the data suggest that some dependencies do
really exist between different features, since the number of customers using
one of its options is the same.

We consider that these results raise interesting questions for future work,
in which we are currently working. First, some way of introducing the con-
cept of return on investment in the variability management framework would
be of interest for many companies, since this would help not only in iden-
tifying and analyzing features, but also in making the decision of whether
introducing them in the system is worth or not. On the other hand, this real
project has helped us to detect that identifying dependencies between features
is not always direct during the analysis phase. Analyzing the real-world data
collected from real systems to try to automatically identify such dependencies
is also an interesting problem for future work.

Acknowledgements

This work has been partially funded by Xunta de Galicia / FEDER-
UE CSI: ED431G/01 (Centros singulares de investigación de Galicia),
Xunta de Galicia / FEDER-UE CSI: ED431C 2017/58 (Grupo de Ref-
erencia Competitiva), MINECO-AEI/FEDER-UE Datos 4.0 (TIN2016-
78011-c4-1-R), MINECO-AEI/FEDER-UE ETOME-RDF3D3 (TIN2015-
69951-R), MINECO-AEI/FEDER-UE Flatcity (TIN2016-77158-C4-3-R),
and MINECO-AEI/FEDER-UE BIZDEVOPS-GLOBAL (provisional refer-
ence: RTI2018-098309-B-C32).



22 Oscar Pedreira et al.

References

[1] Ramon Abilio, Gustavo Vale, Eduardo Figueiredo, and Heitor Costa. Metrics for feature-
oriented programming. In Proceedings of the 7th International Workshop on Emerging
Trends in Software Metrics, WETSoM ’16, pages 36–42, New York, NY, USA, 2016.
ACM.

[2] Sven Apel, Don Batory, Christian Kästner, and Gunter Saake. Feature-oriented software
product lines: Concepts and implementation. Springer, 2013.

[3] Sven Apel and Christian Kästner. An overview of feature-oriented software develop-
ment. Journal of Object Technology, 8(4):1–36, 2009.

[4] Ebrahim Bagheri and Dragan Gasevic. Assessing the maintainability of software product
line feature models using structural metrics. Software Quality Journal, 19:579–612, 09
2011.

[5] David Benavides, Sergio Segura, and Antonio Ruiz-Corts. Automated analysis of feature
models 20 years later: A literature review. Information Systems, 35(6):615–636, 2010.

[6] T. Berger, S. She, R. Lotufo, A. Wasowski, and K. Czarnecki. A study of variability
models and languages in the systems software domain. IEEE Transactions on Software
Engineering, 39(12):1611–1640, Dec 2013.

[7] Thorsten Berger and Jianmei Guo. Towards system analysis with variability model met-
rics. In Proceedings of the Eighth International Workshop on Variability Modelling of
Software-Intensive Systems, VaMoS ’14, pages 23:1–23:8, New York, NY, USA, 2013.
ACM.

[8] Carla I. M. Bezerra, Rossana M. C. Andrade, José M. S. Monteiro, and Davi Cedraz.
Aggregating measures using fuzzy logic for evaluating feature models. In Proceedings of
the 12th International Workshop on Variability Modelling of Software-Intensive Systems,
VAMOS 2018, pages 35–42, New York, NY, USA, 2018. ACM.

[9] Carla I. M. Bezerra, Rossana M. C. Andrade, and José Maria S. Monteiro. Measures
for quality evaluation of feature models. In Ina Schaefer and Ioannis Stamelos, editors,
Software Reuse for Dynamic Systems in the Cloud and Beyond, pages 282–297, Cham,
2014. Springer International Publishing.

[10] Paul Clements and Linda Northrop. Software product lines. Addison-Wesley, 2015.
[11] Krystof Czarnecki and Ulrich Eisenecker. Generative programming: methods, tools, and

applications. Addison-Wesley, 2000.
[12] Krzysztof Czarnecki, Simon Helsen, and Ulrich Eisenecker. Formalizing cardinali-

tybased feature models and their specialization. Software process: improvement and
practice, 10(1):7–29, 2005.

[13] Sascha El-Sharkawy, Nozomi Yamagishi-Eichler, and Klaus Schmid. Metrics for analyz-
ing variability and its implementation in software product lines: A systematic literature
review. Information and Software Technology, 106:1 – 30, 2019.

[14] Matthias Galster, Uwe Zdun, Danny Weyns, Rick Rabiser, Bo Zhang, Michael Goedicke,
and Gilles Perrouin. Variability and complexity in software design: Towards a research
agenda. SIGSOFT Softw. Eng. Notes, 41(6):27–30, January 2017.

[15] Kyo C. Kang, Sajoong Kim, Jaejoon Lee, Kijoo Kim, Euiseob Shin, and Moonhang Huh.
Form: A feature-oriented reuse method with domain-;specific reference architectures.
Annals of Software Engineering, 5(1):143, Jan 1998.



Applying Feature-Oriented Software Development in SaaS Systems 23

[16] C. Lizhen, W. Haiyang, J. Lin, and H. Pu. Customization modeling based on metagraph
for multi-tenant applications. In 5th International Conference on Pervasive Computing
and Applications, pages 255–260, Dec 2010.

[17] Stefan Mann and Georg Rock. Control variant-rich models by variability measures. In
Proceedings of the 5th Workshop on Variability Modeling of Software-Intensive Systems,
VaMoS ’11, pages 29–38, New York, NY, USA, 2011. ACM.

[18] Ralph Mietzner, Andreas Metzger, Frank Leymann, and Klaus Pohl. Variability model-
ing to support customization and deployment of multi-tenant-aware software as a service
applications. In Proceedings of the 2009 ICSE Workshop on Principles of Engineering
Service Oriented Systems, PESOS ’09, pages 18–25, Washington, DC, USA, 2009. IEEE
Computer Society.

[19] H. Moens, E. Truyen, S. Walraven, W. Joosen, B. Dhoedt, and F. De Turck. Developing
and managing customizable software as a service using feature model conversion. In
2012 IEEE Network Operations and Management Symposium, pages 1295–1302, April
2012.

[20] Sonia Montagud, Silvia Abrahão, and Emilio Insfran. A systematic review of quality
attributes and measures for software product lines. Software Quality Journal, 20(3):425–
486, 2012.

[21] Leonardo Passos, Marko Novakovic, Yingfei Xiong, Thorsten Berger, Krzysztof Czar-
necki, and Andrzej Wasowski. A study of non-boolean constraints in variability models
of an embedded operating system. In Proceedings of the 15th International Software
Product Line Conference, Volume 2, page 2. ACM, 2011.

[22] Klaus Pohl and Gnter Bckle. Software product line engineering: Foundations, principles
and techniques. Springer.

[23] Salvador Trujillo, Don Batory, and Oscar Diaz. Feature oriented model driven devel-
opment: A case study for portlets. In Proceedings of the 29th International Conference
on Software Engineering, ICSE ’07, pages 44–53, Washington, DC, USA, 2007. IEEE
Computer Society.

[24] M. Turner, D. Budgen, and P. Brereton. Turning software into a service. Computer,
36(10):38–44, Oct 2003.

[25] Eray Tzn, Bedir Tekinerdogan, Mert Emin Kalender, and Semih Bilgen. Empirical
evaluation of a decision support model for adopting software product line engineering.
Information and Software Technology, 60:77–101, 2015.

[26] Dave Zubrow and Gary Chastek. Measures for software product lines. Technical note,
Software Engineering Institute (SEI) - Carnegie Mellon University.


