
Enabling Agile Web Development through
In-Browser Code Generation and Evaluation?

Alejandro Cortiñas1, Carlo Bernaschina2,
Miguel R. Luaces1, and Piero Fraternali2

1 Universidade da Coruña, Databases Laboratory, A Coruña, Spain
{alejandro.cortinas, luaces}@udc.es

2 Politecnico di Milano, DEIB, Milan, Italy
{carlo.bernaschina, piero.fraternali}@polimi.it

Abstract. Rapid evolution and flexibility are the key of modern web
application development. Rapid Prototyping approaches try to facili-
tate evolution by reducing the time between the elicitation of a new
requirement and the evaluation of a prototype by both developers and
customers. Software generation, with disciplines such as Software Prod-
uct Lines Engineering or Model Driven Engineering, favours the required
flexibility for the development process. Nevertheless, each small change
in the design of an application requires a full redeployment of complex
environments in order to allow customers to test and evaluate the new
configuration. In this work we present an approach that improves the
development process reducing the complexity of deploying evaluation
prototypes and enabling an agile development cycle. The approach can
be applied using software generation and it is based on in-browser gen-
eration and evaluation. We also describe two real world tools that have
integrated the proposed approach in their development cycle.

Keywords: software product lines, model driven engineering, agile soft-
ware development, rapid prototyping

1 Introduction

Reducing time-to-market is a major concern in all software engineering dis-
ciplines. Software development methodologies have dealt with these problems
using rapid development techniques such as agile development and continuous
deployment, and automatic code generation techniques such as Model-Driven
Engineering (MDE) and Software Product Line Engineering (SPLE). However,
in order to allow the final user to review the software, all these techniques require
that the software artefacts are deployed to a production environment. This task

? The work of the authors from UDC has been funded by MINECO (PGE & FEDER)
[TIN2016-78011-C4-1-R, TIN2016-77158-C4-3-R, TIN2013-46238-C4-3-R, TIN2013-
46801-C4-3-R]; CDTI and MINECO [Ref. IDI-20141259, Ref. ITC-20151305, Ref.
ITC-20151247]; Xunta de Galicia (FEDER) [Ref. ED431G/01]; predoctoral research
stay grant Inditex-UDC.



is often time and resource-consuming and hinders real-time interaction between
the final user and the analyst in charge of eliciting requirements. To avoid this
problem, rapid prototyping techniques have been proposed. However, prototypes
are not the final products and it is often required a large effort to build them.

In order to further reduce time-to-market, we propose a new approach that
integrates software-generation techniques with rapid development techniques to
reduce drastically the deployment time of web applications. Furthermore, con-
sidering that web applications are the most popular kind of software products
developed right now, and taking into account that they run on web browsers,
it is possible to use the actual software product as the prototype during the
development stages for the final user to review.

In order to evaluate the approach, we present two different implementations
of our approach as use cases. The first use case is an academic example that
uses for MDE as the software generation technique. The second use case is an
industrial example of a tool developed by Enxenio3 using SPLE.

This work is organized as follows: Sect. 2 summarizes the concepts involved
in our approach; Sect. 3 explains the approach itself; Sect. 4 presents two use
cases of applying it; Sect. 5 draws conclusions and future work.

2 Related work

Developing software following a classic approach is a slow and costly process.
When a client orders a new product, an analyst has to understand what the client
wants and, more importantly, what the client needs. From the ideas the analyst
captures, the set of requirements for the product is forged and, eventually, the set
of features that will comply with them. Then, the analysis and design of the new
software is finished and the development team starts implementing the required
features. Once the product is implemented, tested and deployed, the client can
finally see the product he or she asked for. At this point, the client always
requires changes, even with the best of the analysis. Therefore, a refinement
stage is required, so a new analysis is made and the changes implemented. This
goes on until the client is finally satisfied, an even then, the process starts again
for every new feature that the product must support.

With a naked eye, the process does not seem very efficient, and several
methodologies have appeared to decrease the costs in time and effort. Some of
the new methodologies focus on the implementation and testing stages [3,15,21],
whereas others try to improve the general workflow and the interaction between
the analyst and other stakeholders. Examples of the former are SPLE and MDE,
two fields based on the generation and reusing of software artefacts; an exam-
ple of the latter is Rapid Development, a field which aims at avoiding overly
complicated solutions.

3 http://www.enxenio.es

http://www.enxenio.es


2.1 Rapid Development

In past years many approaches have been proposed to reduce the time required
to bring a product to market. They are specially useful with large and medium
size projects, which require a complex and long development cycle before having
a product that can be evaluated by customers and users.

Agile software development [1] is an incremental and iterative approach
which aims at increasing productivity and adherence to requirements, while keep-
ing the process as lightweight as possible. As an example, workflows such as
SCRUM [21] simplify the introduction of new functionalities by organizing the
work in small tasks and iterative sprints which reduce the time required to de-
velop, integrate and test them.

Continuous deployment [10] is an approach which aims at immediately
deploying software to customers as soon as new code is developed. It has great
advantages like: new business opportunities, reduced risk for each release, and
preventing the development of wasted software. It has been successfully imple-
mented by many companies like Facebook, Microsoft, and IBM.

2.2 Software Product Line Engineering

Traditionally, the development of every software product goes through a series
of steps: elicitation of requirements, design, implementation, testing and mainte-
nance. Following this approach, if a software development company has to build
a family of products, all the stages mentioned must be done for each one of
them, even when the products share functionalities or are focused in the same
specific market. The downside of this approach is that it requires high develop-
ment and maintenance costs in order to produce high quality products, while the
time-to-market for each product is long since development starts from scratch.

In other classic manufacturing industries, such as the automotive or the tex-
tile, the way the products are built evolved from a manual manufacturing process
to industrial processes that use proper machinery. Software Product Lines En-
gineering is a discipline that aims at applying the same kind of evolution to the
way software is built, i.e., applying mass-production, mass-customization and
reuse strategies to software development. A Software Product Line (SPL) is a
family of software products sharing features developed from a common set of
reusable core assets that can be combined and configured in different ways for
different products [11]. A SPL separates the development of these core, reusable
assets (i.e., the platform), and the development of the actual applications (i.e.,
the products). The family of products is modelled as a set of features, which are
end-user visible aspects or characteristics of a software system [12]. Features can
be mandatory or optional, and each product is built from a selection of features
made by an analyst. The main advantages of SPL are the reduced costs and
the improved quality of the products, and the drastic reduction of the time-to-
market for new products compared to the traditional approaches [20]. All these
advantages are simply derived from the fact that the software assets are shared



between all the products, so they are implemented once but used and tested in
every product.

There are several types of SPL regarding the way the products are gener-
ated [4]. In some cases, the product is not expected to be modified after the
generation, or even it is automatically deployed. In other cases, the product is
generated as independent source code that can be extended or refined by a de-
velopment team, and that has to be manually deployed afterwards. In the latter
cases, the cost in time and effort from the generation of the source code to the
deployment may be high.

2.3 Model Driven Development

Model Driven Development (MDD) is the branch of software engineering that
advocates the use of models, i.e., abstract representations of a system, and of
model transformations as key ingredients of software development [15]. With
MDD, developers use a general purpose (e.g. UML [2]) or domain specific (e.g.,
IFML [18]) modelling language to portrait the essential aspects of a system,
under one or more perspectives, and use (or build) suitable chains of transfor-
mations to progressively refine the models into executable code.

Agile Model Driven Development has been advocated as a promising ap-
proach [3], which has not yet fully expressed its potential [17]. Its idea is to
organize the MDD process in ways that take advantage of the agile development
principles:

1. Enabling an incremental and iterative development cycle by using tool chains
able to test and validate even incomplete models [13].

2. Applying a Test-Driven Development, a distinctive feature of extreme pro-
gramming [5], to MDD. [22].

3. Merging agile workflows such as SCRUM [21] with MDD in novel method-
ologies, to achieve system-level agile processes [23].

3 Our approach

SPLE, MDD or similar methodologies for the semi-automatic generation of soft-
ware tackle intrinsic repetitive structures in the development of software prod-
ucts, either full software components like the ones assembled within a SPL, or
actual generation of code from high level descriptions and model-to-model/code
transformations like in MDD. These approaches are particularly suited to the
iterative evolution of the project, by means of small improvements which can
be easily tested and validated. However, the nature of web applications makes
the evaluation of these new features complex, due to the fact that a new full
deployment is necessary after each change.

Continuous deployment is particularly suited to bring these new function-
alities to a set of evaluators, but it is not suitable for an integration in the
development cycle itself due to its complexity. The main problematic in trying



to integrate an evaluation of the final product within SPLE or MDE is related
to the full code generation intrinsic in these approaches. Changes to the final
product cannot be applied directly to the deployed application, but instead the
high level description needs to be updated and a full code generation triggered.

(a) Original

(b) After applying our approach

Fig. 1: Activity diagram of the development process

We show in Fig. 1a a simplified workflow with processes and stakeholders in-
volved in the development of a web application with automatic or semi-automatic
generation of software. We can see how the analyst, with input from the client,
elaborates the Software Specification; then the generation of the product, which
can be based on SPLE, MDD or any other methodology, begins. The generated
software has to be deployed for evaluation by a different actor, the system ad-
ministrator. At this point, the analyst and the client can, together, evaluate the
product and determine whether the product is the one required by the client or
some changes are required. If the product is finished, then the system adminis-
trator can deploy the final version into production environment and the process
ends. If the product is not complete, then the process starts again and the system
administrator is involved, again, to make a redeployment in the testing environ-
ment. There are some cases when the analyst is the one that deploys the product
for evaluation. In these cases, even when there is not an extra actor involved,
this deployment still needs a complex environment and it is time consuming.

We propose an approach to simplify and improve the workflow for the devel-
opment of web applications through automatic generation techniques by remov-



ing the necessity of an actual deployment during the development process. Only
when the analyst decides that a project is correct, the full-source is generated
and deployed.

The workflow, when our approach is applied, is shown in Fig. 1b. It is anal-
ogous to the previous one but, in this case, the same tool that generates the
product provides a preview of it to the analyst and/or to the client. Therefore,
it does not involve a real deployment of the product at this point, so the third
actor, a system administrator, is not required, nor a complex environment or
any extra tool for the evaluation deployment of the project. This tool we are
talking about is nothing but a web browser.

Modern web browsers are able to execute code generation frameworks by
means of Javascript code, and they are able to fully or partially execute the
generated applications by means of iFrames and WebWorkers. Of course, we
cannot expect that absolutely every feature of the product can be previewed
this way but, using mocks and similar techniques, the client can have a real idea
of how the product is and introduce the required changes on the earliest stage.
The generated application can be evaluated directly inside the browser following
three different strategies, complemented using mocks responding to any XHR
request.

Code execution. Applications fully developed with Javascript can be fully
executed inside the browser. The client-side part of the application is executed
inside an iFrame which is able to fully resemble a standalone browser. The
server-side part of the application is executed inside a properly instrumented
WebWorker able to resemble a NodeJS environment.

Full emulation. Applications developed with different technologies can ex-
ploit the full code generation intrinsic to SPLE and MDD to trigger a different
version of the transformation. This way, it can generate a functionally equivalent
version of the application in Javascript which can be tested using the previous
strategy.

Partial emulation. Applications developed with a mixture of Javascript
and other technologies can use a mixed strategy; this is, the non Javascript
parts can be replaced by a functionally equivalent version and then the product
is executed within an iFrame.

All the three strategies can be used to evaluate the final application without
the need of complex server side deployed infrastructures, increasing productivity
and reducing tools configuration complexity.

We have tried our approach within two different tools, one based in SPLE and
the other one in MDD, but our approach can be applied to any other software
generation technique as long as the engine is built with Javascript, which is the
programming language that can be run on a web-browser4

4 In any other case our approach is still conceptually valid but the generation must
occur in the server side and after it, the source code must be loaded within the web
client.



4 Implementations

In this section we present two academic (see Sect. 4.1) and industrial (see
Sect. 4.2) tools which apply the proposed approach to real world scenarios.

4.1 IFMLEdit

IFMLEdit.org5 is an online environment for the specification of IFML models,
the investigation of their properties by means of a mapping to Place Chart
Nets [14], and the generation of code for web and mobile architecture.

IFML (Interaction Flow Modeling Language [18]) is an OMG standard that
supports the platform-independent description of graphical user interfaces (UIs)
for devices such as desktop computers, laptops, mobile phones, and tablets.
IFML focuses on the structure and behaviour of the application as perceived
by the end user, and references the data and business logic aspects insofar they
influence the user’s experience, i.e., the domain objects that provide content
displayed in the interface and the actions triggered from the interface.

IFML allows developers to specify the following aspects of an interactive
application:

– The view structure and content: the general organization of the inter-
face is expressed in terms of ViewElements, along with their containment
relationships, visibility, and activation. Two classes of ViewElements exist:
ViewContainers, i.e., elements for representing the nested structure of the
interface, and ViewComponents, i.e., elements for content display and data
entry. ViewComponents that display content have a ContentBinding, which
expresses the link to the data source.

– The events: the occurrences that affect the state of the user interface, which
can be produced by the user’s interaction, the application, or an external
system.

– The event transitions: the consequences of an event on the user interface,
which can be the change of the ViewContainer, the update of the content
on display, the triggering of an action, or a mix of these effects. Actions are
represented as black boxes.

– The parameter binding: the input-output dependencies between ViewEle-
ments and Actions.

The tool [9], which is developed using ALMOsT.js [6], supports the following
workflow: 1) the developer edits the IFML model of the application in the online
editor, possibly providing hints for the generation of the fast prototype (e.g.,
sample data); 2) he (optionally) maps the model into a PCN and simulates the
network to understand the dynamics of the application in response to events;
3) he generates the code of a fast prototype, for the web or for a cross-platform
mobile language, executes and validates the prototype; 4) he turns the validated
prototype into a real app, by customizing look&feel and replacing mock-up data
access and operational APIs calls with real ones.

5 http://www.ifmledit.org

http://www.ifmledit.org


(a) Model editor (b) Element property editors

Fig. 2: IFML editing

IFML model editing. Figure 2a shows how the integrated IFML editor
allows the developer to compose and edit the model by means of drag&drop
from the palette on the left side.

Data-bindings. Once the structure of the application is modelled, the de-
veloper can use the property editor (Figure 2b) to specify how ViewComponents
connect between them and to the data sources.

Fig. 3: Model semantics simulation

Model semantics and simulation. The developer can generate a formal
description of the application by running the model-to-model transformation
from IFML to PCNs. The application behaviour is rendered visually by means
of tokens moving in the net, displaying the control flow in the interface and the
change of status of ViewElements. Fig. 3 illustrates the PCN model generated
from the IFML diagram of Fig. 2a; the PCN simulation helps the developer



identify inconsistencies in the specified application, such as unreachable states
and race conditions.

(a) Web code generation (b) Mobile code generation

Fig. 4: Code generation

Code generation. The developer can generate a fully functional prototype
for both the web and mobile architecture, launching a model-to-code transforma-
tion. Figure 4a shows the generated web prototype, run on top of the web server
emulated inside the browser. Figure 4b shows the generated mobile prototype,
run within the mobile emulator inside the browser. In-browser emulation allows
the developer to test the current web or mobile release of the prototype without
installing any web server and also in absence of the Internet connection. The
Browser-Server emulator is a pure Javascript component able to emulate a web
browser, a Node.js server and the whole request response cycle that connects the
two. It is used to support online and offline work seamlessly. The Mobile emulator
is a Javascript component able to emulate a mobile cross-platform environment
(now Cordova); it supports the instantaneous execution of the generated cross-
platform mobile code.

Prototype download. The previous steps can be reiterated to evaluate
different application structures (e.g., single vs multiple pages) and interaction
approaches (e.g., update on object selection vs explicit update events). The gen-
erated prototype can be downloaded and refined to produce the final application.
Each IFML Action and ViewComponent data query is encoded as a web service,
which can be replaced by an external implementation.

4.2 GISBuilder

Enxenio6 is a Spanish SME (small and medium enterprise) with expertise in GIS.
Enxenio has collaborated with the Database Laboratory at the University of A

6 http://www.enxenio.es

http://www.enxenio.es


Coruña many times in the past, and several works, such as [7,16,19], are the result
of this collaboration. For some time now, Enxenio and the Database Laboratory
have been working on the design of a SPL for the automatic generation of web-
based GIS applications [8].

GISBuilder is an internal tool that provides a web interface where an analyst
can design and generate the source-code of web-based GIS. The GISBuilder
initial architecture is shown in Fig. 5a and described in [8]. A brief summary of
its workflow follows.

When a client comes in for a new application, the analyst determines which
are the requirements of the new application and designs the application itself.
Then he or she interacts with the specification interface and configures the
product according to this design. In the specification interface three aspects of
the application are set:

– Which features the application provides. Examples of features are csv im-
porter or user management.

– The data model for the application: entities, properties and relationships.
From this data model, the analyst can define lists, forms or map viewers,
and link these elements with menu entries.

– Several aspects of the graphical user interface, such as the menu configura-
tion, the static pages or the UI layout.

Once the configuration or specification of the product is done, the derivation
engine is invoked. This engine takes the product specification and assembles/-
generates the source code of the final products, taking the required components
from the component repository. Since the derivation engine is based on scaf-
folding, the different components are nothing but annotated source code files, or
templates. Furthermore, the product specification is also stored in the project
repository so it can be reloaded and edited in the future if required.

The output provided by GISBUilder is a ZIP file with the source code of
the product that has to be manually deployed within a web server with some
previously installed software (such as Java, Tomcat, Node.js, npm, PostgreSQL
with PostGIS, etc.). Even if it has been deployed previously, it has to be fully
redeployed again. This process is slow and it usually requires more than one
person, since the analyst is not in charge of preproduction deployments. In the
case a client is providing feedback to the analyst, this redeployment causes the
interaction with him to be slow and absolutely not in real-time.

We wanted to facilitate the interaction between the client and the analyst
of the company by allowing the client to propose and evaluate changes to the
product in real-time while it is being configured. To achieve this, we have ap-
plied the approach presented in this paper and we have enhanced GISBuilder to
generate and show a preview of the designed products at runtime, directly on
the browser, without the need of any server-side structure.

In order to get this, we have changed the way GISBuilder is designed, as we
can see in Fig. 5b. The main changes are:



(a) Original architecture (b) Adapted architecture

Fig. 5: Architecture changes in GISBuilder

1) We have implemented a new version of the derivation engine that is able
to run entirely on the web browser.

2) The derivation engine is integrated within the specification interface,
as well as the component repository, provided as a ZIP file.

3) Our preview component intercepts XHR request of the previewing application
and returns mocks responses to each specific REST petition.

4) GISBuilder produces full-stack web applications with Spring in the server side
and Angular in the client side. In the adapted version, GISBuilder creates two
different versions of the products, depending on whether the analyst wants
to preview them or to download the full-stack version.

This way, after a reconfiguration of the product, the analyst can simply run
its preview and show the client its aspect. Of course, the previewing component
does not run every feature of the SPL, but it can still show enough to provide
the customer a realistic view of the application. When the client is satisfied with
the preview, the actual full-stack version of the product can be generated and
deployed, just as before.

5 Conclusions and Future Work

Reducing the time required to introduce a new functionality is a key require-
ment of modern software development. Approaches like Software Product Lines
Engineering and Model Driven Engineering exploit recurrent structures through
high-level descriptions that are refined into final product via full code generation.

In web-based development tools, the ability to generate the code and to
execute or emulate the final application in the browser enables iterative devel-
opment cycles based on the evaluation of the final product after small changes
without the need of complex infrastructures or development environments. We
have proposed in this paper an approach that can be used to modify software
development methodologies to enable agile web development through in-browser
code generation and evaluation. We have also used the approach in two real world



tools: an academic tool that was developed from scratch, and an industrial tool
whose functionalities were extended.

In future works we will propose a standard framework aiming at facilitating
the integration of the proposed approach into existing tools.

References

1. Principles behind the Agile Manifesto. http://agilemanifesto.org/principles.html

2. UML unified modeling language. www.uml.org/, accessed: 2017-1-10

3. Ambler, S.W.: Agile model driven development is good enough. IEEE Softw. 20(5),
71–73 (Sep 2003), http://dx.doi.org/10.1109/MS.2003.1231156

4. Apel, S., Batory, D., Kästner, C., Saake, G.: Feature-Oriented Software Product
Lines (2013), http://www.springer.com/us/book/9783642375200

5. Beck, K.: Extreme Programming Explained: Embrace Change. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA (2000)

6. Bernaschina, C.: (ACCEPTED) ALMOsT.js: an agile model to model and model
to text transformation framework. In: Proceedings of the 2017 International Con-
ference on Web Engineering. ICWE’17 (2017)

7. Brisaboa, N.R., Cotelo-Lema, J.A., Fariña, A., Luaces, M.R., Parama, J.R.,
Viqueira, J.R.R.: Collecting and publishing large multiscale geographic datasets.
Software: Practice and Experience 37(12), 1319–1348 (oct 2007), http://

onlinelibrary.wiley.com/doi/10.1002/spe.807/abstract

8. Brisaboa, N.R., Cortiñas, A., Luaces, M.R., Pedreira, O.: GISBuilder: a framework
for the semi-automatic generation of web-based geographic information systems.
Proceedings of the 20th Pacific Asia Conference on Information Systems (PACIS
2016) (2016)

9. Carlo, B., Sara, C., Piero, F.: (accepted)IFMLEdit.org: a web tool for model based
rapid prototyping of web and mobile applications. In: Proceedings of the Interna-
tional Conference on Mobile Software Engineering and Systems. MOBILESoft ’17
(2017)

10. Claps, G.G., Svensson, R.B., Aurum, A.: On the journey to continuous deployment:
Technical and social challenges along the way. Information and Software Technol-
ogy 57, 21 – 31 (2015), http://www.sciencedirect.com/science/article/pii/
S0950584914001694

11. Clements, P., Northrop, L.: Software Product Lines: Practices and Pat-
terns. Addison-Wesley (2002), https://books.google.es/books/about/

Software{_}Product{_}Lines.html?id=tHGFQgAACAAJ{&}pgis=1

12. Kang, K.C., Cohen, S.G., Hess, J.a., Novak, W.E., Peterson, a.S.: Feature-Oriented
Domain Analysis (FODA) Feasibility Study. Distribution 17(November), 161
(1990), http://www.sei.cmu.edu/reports/90tr021.pdf

13. Kirby, Jr., J.: Model-driven agile development of reactive multi-agent systems. In:
Proceedings of the 30th Annual International Computer Software and Applications
Conference - Volume 02. pp. 297–302. COMPSAC ’06, IEEE Computer Society,
Washington, DC, USA (2006), http://dx.doi.org/10.1109/COMPSAC.2006.144

14. Kishinevsky, M., Cortadella, J., Kondratyev, A., Lavagno, L., Taubin, A., Yakovlev,
A.: Coupling asynchrony and interrupts: Place chart nets. In: Application and
Theory of Petri Nets 1997, 18th International Conference, ICATPN ’97, Toulouse,
France, June 23-27, 1997, Proceedings. pp. 328–347 (1997)

www.uml.org/
http://dx.doi.org/10.1109/MS.2003.1231156
http://www.springer.com/us/book/9783642375200
http://onlinelibrary.wiley.com/doi/10.1002/spe.807/abstract
http://onlinelibrary.wiley.com/doi/10.1002/spe.807/abstract
http://www.sciencedirect.com/science/article/pii/S0950584914001694
http://www.sciencedirect.com/science/article/pii/S0950584914001694
https://books.google.es/books/about/Software{_}Product{_}Lines.html?id=tHGFQgAACAAJ{&}pgis=1
https://books.google.es/books/about/Software{_}Product{_}Lines.html?id=tHGFQgAACAAJ{&}pgis=1
http://www.sei.cmu.edu/reports/90tr021.pdf
http://dx.doi.org/10.1109/COMPSAC.2006.144


15. Kleppe, A., Warmer, J., Bast, W.: MDA explained - the Model Driven
Architecture: practice and promise. Addison Wesley object technol-
ogy series, Addison-Wesley (2003), http://www.informit.com/store/

mda-explained-the-model-driven-architecture-practice-9780321194428

16. Luaces, M.R., Pérez, D.T., Fonte, J.I.L., Cerdeira-Pena, A.: An Urban Plan-
ning Web Viewer Based on AJAX. In: Vossen, G., Long, D.D.E., Yu, J.X.
(eds.) Web Information Systems Engineering - WISE 2009. pp. 443–453. Lec-
ture {Notes} in {Computer} {Science}, Springer Berlin Heidelberg (oct 2009),
http://link.springer.com/chapter/10.1007/978-3-642-04409-0{_}43

17. Matinnejad, R.: Agile model driven development: An intelligent compromise. In:
Proceedings of the 2011 Ninth International Conference on Software Engineering
Research, Management and Applications. pp. 197–202. SERA ’11, IEEE Computer
Society, Washington, DC, USA (2011), http://dx.doi.org/10.1109/SERA.2011.
17

18. OMG: Interaction flow modeling language (ifml), version 1.0. http://www.omg.
org/spec/IFML/1.0/ (2015)

19. Places, Á.S., Brisaboa, N.R., Fariña, A., Luaces, M.R., Paramá, J.R., Penabad,
M.R.: The Galician virtual library. Online Information Review 31(3), 333–352 (jun
2007), http://www.emeraldinsight.com/doi/full/10.1108/14684520710764104

20. Pohl, K., Böckle, G., Linden, F.V.D.: Software Product Line Engineering: founda-
tions, principles and techniques, vol. 49 (2005), http://www.springerlink.com/
index/10.1007/3-540-28901-1

21. Schwaber, K., Beedle, M.: Agile software development with Scrum. Prentice Hall
(2002)

22. Stahl, T., Voelter, M., Czarnecki, K.: Model-driven software development: technol-
ogy, engineering, management (2006)

23. Zhang, Y., Patel, S.: Agile model-driven development in practice. IEEE Softw.
28(2), 84–91 (Mar 2011), http://dx.doi.org/10.1109/MS.2010.85

http://www.informit.com/store/mda-explained-the-model-driven-architecture-practice-9780321194428
http://www.informit.com/store/mda-explained-the-model-driven-architecture-practice-9780321194428
http://link.springer.com/chapter/10.1007/978-3-642-04409-0{_}43
http://dx.doi.org/10.1109/SERA.2011.17
http://dx.doi.org/10.1109/SERA.2011.17
http://www.omg.org/spec/IFML/1.0/
http://www.omg.org/spec/IFML/1.0/
http://www.emeraldinsight.com/doi/full/10.1108/14684520710764104
http://www.springerlink.com/index/10.1007/3-540-28901-1
http://www.springerlink.com/index/10.1007/3-540-28901-1
http://dx.doi.org/10.1109/MS.2010.85

	Enabling Agile Web Development through In-Browser Code Generation and Evaluation

