Repositorio Dspace

Competitive author profiling using compression-based strategies

Mostrar el registro sencillo del ítem

dc.rights.license info:eu-repo/semantics/openAccess
dc.contributor.author Claude, Francisco
dc.contributor.author Galaktionov, Daniv
dc.contributor.author Konow, Roberto
dc.contributor.author Ladra, Susana
dc.contributor.author Pedreira, Óscar
dc.date.accessioned 2025-10-13T12:16:40Z
dc.date.available 2025-10-13T12:16:40Z
dc.date.issued 2019
dc.identifier.uri http://dspace.infodocu.lbd.org.es/xmlui/handle/123456789/1406
dc.description.abstract In this paper we address the problem by using several compression-inspired strategiesthat generate different models without analyzing or extracting specific features from thetextual content, making them style-oblivious approaches. We analyze the behavior ofthese techniques, combine them and compare them with other state-of-the-art methods.We show that they can be competitive in terms of accuracy, giving the best predictionsfor some domains, and they are efficient in time performance. en_US
dc.format.mimetype PDF
dc.language.iso en en_US
dc.relation.ispartof Laboratorio de Bases de Datos
dc.relation.ispartofseries SERIE_001;BIO_003
dc.subject gender pre-diction en_US
dc.subject age prediction en_US
dc.subject compression-based classification en_US
dc.subject author profiling en_US
dc.title Competitive author profiling using compression-based strategies en_US
dc.type Article en_US
lbd.tema Bioinformática
lbd.paginas 14


Ficheros en el ítem

Este ítem aparece en la(s) siguiente(s) colección(ones)

  • Revistas
    Revistas relacionadas con Bioinformática

Mostrar el registro sencillo del ítem

Buscar en DSpace


Búsqueda avanzada

Listar

Mi cuenta