Mostrar el registro sencillo del ítem
| dc.rights.license | info:eu-repo/semantics/openAccess | |
| dc.contributor.author | Claude, Francisco | |
| dc.contributor.author | Galaktionov, Daniv | |
| dc.contributor.author | Konow, Roberto | |
| dc.contributor.author | Ladra, Susana | |
| dc.contributor.author | Pedreira, Óscar | |
| dc.date.accessioned | 2025-10-13T12:16:40Z | |
| dc.date.available | 2025-10-13T12:16:40Z | |
| dc.date.issued | 2019 | |
| dc.identifier.uri | http://dspace.infodocu.lbd.org.es/xmlui/handle/123456789/1406 | |
| dc.description.abstract | In this paper we address the problem by using several compression-inspired strategiesthat generate different models without analyzing or extracting specific features from thetextual content, making them style-oblivious approaches. We analyze the behavior ofthese techniques, combine them and compare them with other state-of-the-art methods.We show that they can be competitive in terms of accuracy, giving the best predictionsfor some domains, and they are efficient in time performance. | en_US |
| dc.format.mimetype | ||
| dc.language.iso | en | en_US |
| dc.relation.ispartof | Laboratorio de Bases de Datos | |
| dc.relation.ispartofseries | SERIE_001;BIO_003 | |
| dc.subject | gender pre-diction | en_US |
| dc.subject | age prediction | en_US |
| dc.subject | compression-based classification | en_US |
| dc.subject | author profiling | en_US |
| dc.title | Competitive author profiling using compression-based strategies | en_US |
| dc.type | Article | en_US |
| lbd.tema | Bioinformática | |
| lbd.paginas | 14 |